Normale Ansicht

Received before yesterday

Einen Tang-Server auf Debian installieren

21. April 2025 um 06:00

In diesem Text dokumentiere ich, wie ein Tang-Server auf Debian installiert werden kann und wie man den Zugriff auf diesen auf eine bestimmte IP-Adresse einschränkt.

Wer mit dem Begriff Tang-Server noch nichts anfangen kann und dies ändern möchte, dem empfehle ich: Network Bound Disk Encryption im Überblick.

Installation und Konfiguration

Installiert wird der Tang-Server mit folgendem Befehl:

sudo apt install tang

Standardmäßig lauscht der Tang-Server auf Port 80. Da dieser Port auf meinem Server bereits belegt ist, erstelle ich mit dem Befehl sudo systemctl edit tangd.socket eine Override-Datei mit folgendem Inhalt:

:~# cat /etc/systemd/system/tangd.socket.d/override.conf 
[Socket]
ListenStream=
ListenStream=7500

Mit den folgenden Kommandos wird die geänderte Konfiguration eingelesen, die Konfiguration kontrolliert und der Dienst gestartet:

:~# systemctl daemon-reload
:~# systemctl show tangd.socket -p Listen
Listen=[::]:7500 (Stream)
:~# systemctl enable tangd.socket --now

Zugriff auf eine IP-Adresse beschränken

Ich möchte den Zugriff auf den Tang-Server auf eine IP-Adresse beschränken, nämlich auf die IP-Adresse des einen Clevis-Clients, der diesen Server verwenden wird. Dazu führe ich die folgenden Schritte durch.

:~# iptables -A INPUT -p tcp -s 203.0.113.1 --dport 7500 -j ACCEPT
:~# iptables -A INPUT -p tcp --dport 7500 -j DROP
:~# mkdir /etc/iptables
:~# iptables-save >/etc/iptables/rules.v4

Damit die in der Datei /etc/iptables/rules.v4 gespeicherten Regeln nach einem Neustart wieder geladen werden, erstelle ich ein Systemd-Service:

:~# cat /etc/systemd/system/load-iptables.service 
[Unit]
Description=Load iptables rules
Before=network.target

[Service]
Type=oneshot
ExecStart=/sbin/iptables-restore < /etc/iptables/rules.v4
#ExecStart=/sbin/ip6tables-restore < /etc/iptables/rules.v6

[Install]
WantedBy=multi-user.target

:~# systemctl daemon-reload
root@vmd54920:~# systemctl enable load-iptables.service
Created symlink /etc/systemd/system/multi-user.target.wants/load-iptables.service → /etc/systemd/system/load-iptables.service.

Test

Um zu überprüfen, ob der Tang-Server wie gewünscht arbeitet, setze ich auf meinem Clevis-Client den folgenden Befehl ab. Dabei muss nach der Ver- und Entschlüsselung der gleiche Text ‚test‘ ausgegeben werden.

~]$ echo test | clevis encrypt tang '{"url":"tang1.example.com:7500"}' -y | clevis decrypt
test

Fertig.

Einführung in den RHEL image mode

27. Januar 2025 um 06:00

Dieses Tutorial führt in den RHEL image mode ein und zeigt, wie ein solches Image in einer virtuellen Maschine (VM) installiert werden kann. Es wird ebenfalls gezeigt, wie ein installiertes Image aktualisiert und bei Bedarf zurückgerollt werden kann.

Während diese Einführung in Deutsch gehalten ist, liegen die Dokumentation und weitere verwendete Quellen ausschließlich in englischer Sprache vor.

Das Tutorial richtet sich in erster Linie an Sysadmins, die bereits Erfahrung mit dem Betrieb von RHEL oder einer verwandten Enterprise Linux Distribution haben. Es bietet keine allgemeine Einführung in die Installation und den Betrieb von Red Hat Enterprise Linux.

Zum Inhalt

Die folgende Liste bietet einen Überblick über den Inhalt:

Was ist der RHEL image mode?

RHEL image mode ist eine Technology Preview und stellt eine neue Methode dar, um RHEL zu konfigurieren, installieren bzw. deployen und zu verwalten.

Durch Nutzung von Container-Tools wird ein Container-Image erstellt, welches neben dem RHEL-Userland auch den RHEL-Kernel, Boot Loader, Firmware und Treiber umfasst. Dieses RHEL-Container-Image (auch RHEL Bootc Image genannt) kann anschließend genutzt werden, um RHEL im Datacenter oder in der Cloud – auf Bare-Metal-Servern, virtuellen Maschinen oder Edge-Geräten zu deployen. Das RHEL-Container-Image kann direkt als Container ausgeführt werden, um die Funktionalität zu testen. Für das Deployment kann das Container-Image in ein Disk-Image für die entsprechende Zielplattform konvertiert werden. Ein installiertes oder als Disk-Image provisioniertes System läuft anschließend nativ auf der Hardware bzw. in der virtuellen Maschine und wird dort nicht als Container ausgeführt.

Konsolidierung von Bereitstellungsprozessen

In vielen Unternehmen kommen heute neben klassischen virtuellen Maschinen auch Linux-Container zum Einsatz. RHEL image mode bietet die Möglichkeit, Bereitstellungsprozesse zu konsolidieren, indem für die Bereitstellung von RHEL-Images die gleichen Werkzeuge genutzt werden, wie für die Bereitstellung von Container-Images für Anwendungen.

Immutable RHEL

Mit Ausnahme von /etc und /var ist das Wurzel-Dateisystem in RHEL image mode immutable (read-only).

Anwendungen und Updates werden durch aktualisierte RHEL-Container-Images verteilt. Ein provisioniertes System lädt dazu das aktualisierte Image auf die lokale Festplatte und startet dieses nach einem Neustart. Im Fehlerfall kann durch einen weiteren Neustart einfach das vorherige Image gestartet werden. So können fehlgeschlagene Updates einfach zurückgerollt werden.

Dies bietet dem Admin die Sicherheit, bei Bedarf zum vorherigen Zustand zurückkehren zu können, ohne dafür auf VM-/Storage-Snapshots oder andere Mechanismen außerhalb des Betriebssystems zurückgreifen zu müssen.

Deklarative Konfiguration des Betriebssystems

RHEL image mode macht es einfach, zu konfigurieren und zu verfolgen, welche Pakete in einem Basis-Image enthalten sind und wann welche Pakete hinzugefügt wurden.

Red Hat veröffentlicht in der Container-Registry registry.redhat.io RHEL Bootc Base Images, welche die Basis für eigene Images darstellen. Zu jeder Version wird eine Liste der enthaltenen Pakete veröffentlicht. Diese ist über den Red Hat Ecosystem Catalog einsehbar:

Ansicht der Paketliste eines RHEL 9 Bootc Base Image

Hier ist zu beachten, dass obwohl amd64 als Architektur ausgewählt wurde, die Liste Pakete aller verfügbaren Architekturen zeigt. Natürlich sind im Basis-Image nicht 2302 Pakete enthalten. Die Filtermöglichkeiten und die Ergebnisliste zeigen leider unerwartete Ergebnisse. Ich habe dies bereits intern gemeldet und hoffe, dass sich bald jemand der Sache annimmt.

Das in obiger Abbildung gezeigte Image enthält für die amd64-Architektur 441 Pakete. Vergleiche ich dies mit zwei meiner RHEL 9 Installationen, die auf der Minimalinstallation basieren, so umfassen diese 591 bzw. 510 Pakete. Der Vergleich hinkt allerdings, da ich auf den RHEL package mode Installationen bereits weitere Software nachinstalliert habe. Ich bin jedoch erfreut, dass das Basis-Image nicht mehr Pakete als eine Minimalinstallation enthält.

Pakete, die zusätzlich hinzugefügt werden sollen, werden im Containerfile aufgeführt, welches üblicherweise einer Versionskontrolle unterliegt. Änderungen können so jederzeit nachvollzogen werden.

Weitere Informationen bietet das Kapitel 1 in Using image mode for RHEL to build, deploy, and manage operating systems.

Voraussetzungen

Um die in diesem Tutorial gezeigten Schritte selbst ausführen zu können, werden folgende Dinge benötigt:

  • Ein registriertes RHEL 9 System
    • mit einer beliebigen RHEL Subskription,
    • dem installierten Meta-Paket container-tools
  • Zugriff auf registry.redhat.io
  • Eine virtuelle Maschine oder einen Rechner, auf dem RHEL image mode installiert werden kann

Falls ihr gerade keine geeignete Laborumgebung zur Verfügung habt, könnt ihr den Image Mode auch in diesen interaktiven Labs ausprobieren:

Meine Laborumgebung

Meine Laborumgebung besteht aus zwei virtuellen Maschinen, welche auf einem Laptop ausgeführt werden. Beide VMs verfügen über 2 vCPU, 8 GB RAM und 40 GB Speicher.

Auf VM 1 werden folgende Tätigkeiten ausgeführt:

  • Erstellung und Ausführung einer einfachen Container-Registry
  • Erstellung und Pflege eines oder mehrerer rhel-bootc-Container-Images
  • Erstellung von Disk-Images

Anhand von VM 2 werden folgende Dinge demonstriert:

  • Installation von RHEL image mode
  • Aktualisierung der Installation
  • Wechsel des verwendeten Images
  • Rollback

Die in diesem Tutorial verwendeten Containerfiles, Dateien und Skripte habe ich in einem Git-Repository gesammelt. Fühlt euch frei, die dortigen Dateien auf eigene Gefahr für eigene Versuche zu verwenden. Repository-URL: https://github.com/tronde/image-mode-demo

RHEL Bootc Image erstellen

Dieser Abschnitt wurde aus Kapitel 2 der Dokumentation Using image mode for RHEL to build, deploy, and manage operating systems abgeleitet. In ihm wird das RHEL-Container-Image erstellt, welches im nächsten Schritt für das Deployment in einer VM vorbereitet wird. Dieser Abschnitt behandelt folgende Schritte:

  1. Containerfile(5) erstellen
  2. Container-Image mit podman-build(1) erstellen
  3. Container-Image auf dem Build-System testen

Containerfile

Mit dem folgenden Containerfile(5) wird konfiguriert, wie das RHEL Bootc Base Imagerhel-bootc:9.5‚ angepasst werden soll:

$ cat Containerfile 
FROM registry.redhat.io/rhel9/rhel-bootc:9.5
ADD index.html /var/www/html/index.html
RUN dnf -y install httpd \
    openssh-server \
    bind-utils \
    net-tools \
    chrony \
    vim-enhanced \
    man-pages \
    strace \
    lsof \
    tcpdump \
    bash-completion && \
    dnf clean all
RUN systemctl enable httpd sshd
  1. Es wird eine index.html-Datei hinzugefügt
  2. Die installierten Pakete werden aktualisiert
  3. Weitere Pakete werden installiert
  4. Der DNF-Paket-Cache wird entfernt
  5. Die Dienste httpd und sshd werden aktiviert, damit sie nach dem Boot-Vorgang automatisch starten

Die im Containerfile aufgeführten Pakete sind eine persönliche Auswahl, die ich gern auf meinen Systemen habe. Ihr könnt hier natürlich die Pakete eurer Wahl eintragen.

Für dieses Tutorial installiere ich den Dienst httpd. Das von dem Image provisionierte System wird also einen Webserver hosten. Dass ich die index.html-Datei ebenfalls dem Image hinzufüge, soll mir lediglich den späteren Test in diesem Tutorial vereinfachen. Je nach Aufbau, Inhalt und Änderungsrate der auszuliefernden Webseite bzw. Webanwendung ist es nicht sinnvoll, diese in das Image zu integrieren.

Build

Login registry.redhat.io

Bevor das erste Container-Image erstellt werden kann, ist eine Anmeldung an der Container-Registry registry.redhat.io notwendig:

$ podman login registry.redhat.io
Username: alice
Password: 
Login Succeeded!

Weitere Unterstützung zur Anmeldung bietet: Red Hat Container Registry Authentication

Image erstellen

Mit dem folgenden Befehl kann nun ein Image aus obigen Containerfile erstellt werden:

$ time podman build -t localhost/rhel9.5-bootc:test .
…
Successfully tagged localhost/rhel9.5-bootc:test
c958185aa4c578af37b5bca796c7c5e50a270f7b7de38126c31fa6ab97046f41

real    2m52.574s
user    2m31.787s
sys     0m59.680s
$ podman images
REPOSITORY                                  TAG               IMAGE ID      CREATED         SIZE
localhost/rhel9.5-bootc  test              c958185aa4c5  40 seconds ago  1.68 GB
registry.redhat.io/rhel9/rhel-bootc         9.5               7cf5466a7756  2 days ago      1.56 GB

Das Container-Image wird unter dem Namen localhost/rhel9.5-bootc:test im lokalen Dateisystem gespeichert.

Der Build-Vorgang dauerte insgesamt knapp 3 Minuten. Darin ist die Zeit zum Herunterladen des Basis-Image registry.redhat.io/rhel9/rhel-bootc:9.5 enthalten. Ist dieses Image bereits vorhanden, dauert der Build-Vorgang nur knapp über 1 Minute.

Test

Der nun folgende Code-Block zeigt, wie das soeben erstellte Container-Image mit Podman im interaktiven Modus gestartet werden kann. Es wird geprüft, ob die index.html-Datei vorhanden ist und wie viele Pakete das Image enthält.

$ podman run -it --rm --name mybootc localhost/rhel9.5-bootc:test /bin/bash
bash-5.1# ls -l /var/www/html
total 4
-rw-r--r--. 1 root root 342 Jan 11 11:20 index.html
bash-5.1# rpm -qa | wc -l
465
bash-5.1#

Als nächste teste ich, ob die index.html-Datei auch ausgeliefert wird:

$ podman run -d --rm -p 127.0.0.1:8888:80 --name mybootc localhost/rhel9.5-bootc:test 
fa9c1f5110cd58c3f28760fb5a5d69cdc4595a5cba2f29ff67f85eaa076204ab
$ curl http://127.0.0.1:8888
<!DOCTYPE html>
<html lang="de">
  <head>
    <meta charset="utf-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Bootc Demo Page</title>
  </head>
  <body>
                <p>Diese Seite wird von einem Webserver ausgeliefert, der mit RHEL Bootc Image Mode bereitgestellt wurde.</p>
  </body>
</html>

Test erfolgreich! Die konfigurierte Webseite wird wie erwartet ausgeliefert. Der Container wird mit podman stop mybootc gestoppt und der Test ist beendet.

Zwischenfazit

Bis hier wurde ein Containerfile erstellt, welches das zu verwendende Basis-Image, die zusätzlich zu installierenden Pakete und die auszuführenden Dienste definiert. Mit Hilfe dieses Containerfiles und Podman wurde anschließend das Container-Image localhost/rhel9.5-bootc:test erzeugt. Mit einem einfachen Test konnte auf dem Build-System verifiziert werden, dass die index.html-Datei wie gewünscht ausgeliefert wird.

Das Image enthält keinerlei Passwörter oder SSH-Schlüssel. Es sind somit bisher keinerlei Geheimnisse enthalten, die mit dem Image verloren gehen könnten.

Verglichen mit einer klassischen RHEL-Minimalinstallation, die als Basis für ein Golden-Image dient, konnte der Vorgang deutlich schneller abgeschlossen werden.

ISO-Image mit dem bootc-image-builder erstellen

Der bootc-image-builder ist eine Container-Variante des RHEL Image Builder. Mit diesem wird in den folgenden Schritten ein ISO-Image aus dem zuvor erstellten Container-Image erzeugt. Mit dem ISO-Image wird anschließend eine Installation in einer VM durchgeführt.

Mit dem bootc-image-builder können auch Disk-Images wie AMI, GCE, QCOW2, RAW und VMDK erzeugt werden. Ich habe mich für ISO entschieden, da dies am vielseitigsten verwendbar ist. Man kann damit VMs unter KVM/Qemu und VMware genauso installieren, wie Bare-Metal-Server.

Benutzer, Passwort und SSH-Schlüssel hinzufügen

Um sich nach der Installation interaktiv am System anmelden zu können, werden dem ISO-Image ein Benutzer mit Passwort und SSH-Schlüssel hinzugefügt. Dafür wird die folgende Datei toml.config genutzt:

$ cat config.toml 
[[customizations.user]]
name = "alice"
password = "changeme"
key = "ssh-ed25519 AAAAC3NzaC…cr alice@example.com"
groups = ["wheel"]

Durch Hinzufügen des Benutzers zur Gruppe wheel darf dieser privilegierte Kommandos mittels sudo ausführen.

Das Container-Image in den passenden Benutzerkontext kopieren

Das Image localhost/rhel9.5-bootc:test wurde mit einem rootless-Benutzer erstellt. Der Befehl im folgenden Abschnitt muss jedoch mit root-Rechten ausgeführt werden. Rootful-Podman kann jedoch nicht auf das Image zugreifen, welches wir mit rootless-Podman erstellt haben. Der Vorgang würde fehlschlagen mit der Meldung: Error: localhost/rhel9.5-bootc:test: image not known.

Um dies zu verhindern, gibt es zwei Möglichkeiten. Möglichkeit 1 bietet sich an, wenn man das ISO-Image auf dem gleichen System wie das Container-Image erzeugen möchte. Hierbei wird das Container-Image einfach in den passenden Benutzerkontext kopiert. Die zweite Möglichkeit besteht darin, das Container-Image in eine Container-Registry zu pushen, aus der es dann im nächsten Schritt wieder gepullt werden kann.

Möglichkeit 1

Das Container-Image wird mit folgendem Befehl aus dem Kontext des Benutzers ‚alice‘ in den Kontext des Benutzers ‚root‘ kopiert.

$ podman image scp alice@localhost::rhel9.5-bootc:test
…
$ sudo podman images
REPOSITORY                                    TAG         IMAGE ID      CREATED         SIZE
localhost/rhel9.5-bootc                       test        fb6237fff684  21 minutes ago  1.68 GB

Wird kein Ziel-Benutzer spezifiziert, wird root als Ziel angenommen. Weitere Informationen zur Verwendung dieses Befehls bietet podman-image-scp(1) und der Artikel: How Podman can transfer container images without a registry?

Möglichkeit 2

Selbstverständlich kann das Container-Image auch in einer Container-Registry gespeichert und im root-Kontext von dort wieder heruntergeladen werden. Für die spätere Aktualisierung eines installierten RHEL image mode Systems ist die Nutzung einer Container-Registry von Vorteil.

How to implement a simple personal/private Linux container image registry for internal use beschreibt die Einrichtung einer einfachen Registry. Ich habe die auszuführenden Schritte in dem Skript create_simple_container_registry.sh zusammengefasst. Die zur Ausführung notwendigen Parameter werden in der Datei registry.vars konfiguriert. Diese Datei ist bereits mit Standardwerten gefüllt, die direkt verwendet werden können. Installiert und konfiguriert wird die Registry mit dem Kommando:

$ sudo bash create_simple_container_registry.sh

Ich trage die IP-Adresse und den Hostnamen meiner VM 1 in die Datei /etc/hosts ein, damit die Namensauflösung funktioniert. Der folgende Code-Block zeigt, wie das Image localhost/rhel9.5-bootc in die Registry gepusht wird.

$ podman login --tls-verify=false vm1.example.com:5000
Username: registryuser
Password: 
Login Succeeded!
$ podman tag localhost/rhel9.5-bootc:test vm1.example.com:5000/rhel9.5-bootc:test
$ podman push --tls-verify=false jkastnin-tpp1-rhel9-podman-1:5000/rhel9.5-bootc:test
Getting image source signatures
…
Writing manifest to image destination

Die Option --tls-verfiy=false ist notwendig, da ein selbstsigniertes TLS-Zertifikat verwendet wird. Mit dem folgenden Befehl kann überprüft werden, ob sich das Image in der Registry befindet.

$ curl -k -u registryuser:registrypass https://vm1.example.com:5000/v2/_catalog
{"repositories":["rhel9.5-bootc"]}

Der bootc-image-builder in Aktion

Der folgende Code-Block zeigt, wie mit dem bootc-image-builder eine ISO-Datei erzeugt wird, die sich für eine RHEL-Installation in einer Offline-Umgebung eignet. Der Befehl muss mit sudo ausgeführt werden, da erweiterte Benutzerrechte erforderlich sind.

Da das Container-Image des bootc-image-builder noch nicht lokal vorliegt, muss zuerst ein Login bei registry.redhat.io erfolgen. Dies wurde weiter oben bereits für den rootless-Benutzer durchgeführt, muss für den rootful-Benutzer jedoch wiederholt werden, da Logins nicht zwischen verschiedenen Benutzerkontexten geteilt werden.

Achtung: Der folgende Befehl funktioniert nur, wenn das Image localhost/rhel9.5-bootc:test für root verfügbar ist. Dies kann durch eine der Methoden, die im vorherigen Abschnitt beschrieben wurden, sichergestellt werden. Ich habe in diesem konkreten Fall Möglichkeit 1 verwendet.

$ sudo podman login registry.redhat.io
Username: alice
Password: 
Login Succeeded!
$ mkdir output
$ time sudo podman run \
> --rm \
> -it \
> --privileged \
> --pull=newer \
> --security-opt label=type:unconfined_t \
> -v /var/lib/containers/storage:/var/lib/containers/storage \
> -v $(pwd)/config.toml:/config.toml \
> -v $(pwd)/output:/output \
> registry.redhat.io/rhel9/bootc-image-builder:latest \
> --type iso \
> --config /config.toml \
> --local \
> localhost/rhel9.5-bootc:test
…
real    22m31.407s
user    0m1.997s
sys     0m2.049s
$ ls -lh output/bootiso/
total 2.4G
-rw-r--r--. 1 root root 2.4G Jan 11 14:26 install.iso

Nun zur Erklärung des Ganzen:

  1. Der Login erfolgt, um das bootc-image-builder-Image herunterladen zu können
  2. Im Projektverzeichnis wird das Verzeichnis output erstellt, welches die ISO-Datei enthalten wird
  3. Nun folgt ein ziemlich langer Aufruf von podman run
    • Falls in registry.redhat.io eine neuere Version des bootc-image-builder gefunden wird, wird diese heruntergeladen und genutzt
    • bootc-image-builder muss mit erhöhten Rechten ausgeführt werden, weshalb die Ausführung mittels sudo und die Option --privileged erforderlich sind
    • Ort der config.toml und Verzeichnis für das ISO werden dem Container als Volume zugänglich gemacht
    • Mit --type iso wird festgelegt, dass eine ISO-Datei erstellt werden soll
    • Die Option --local gibt an, dass das lokal existierende Image localhost/rhel9.5-bootc.test verwendet und dies nicht aus einer Registry geholt werden soll

Dass der Vorgang ganze 22 Minuten dauerte, ist den 2 vCPU-Kernen und den 8 GB RAM meiner VM geschuldet. Während der Arbeitsspeicher gerade ausreichend war, dürften weitere CPU-Kerne den Vorgang deutlich beschleunigen.

Das nun erstellte ISO kann zur Installation in VM 2 verwendet werden.

Offline-Installation mit dem RHEL image mode

Das im vorherigen Abschnitt erstellte Disk-Image install.iso wird nun verwendet, um VM 2 zu installieren. Die Installation läuft wie eine normale unbeaufsichtigte Anaconda-Installation ab.

In der Datei toml.config wurde ein Benutzer mit einem SSH-Schlüssel spezifiziert, der nun zum Login in das neue System verwendet werden kann.

$ ssh -o StrictHostKeyChecking=no alice@vm2.example.com
Warning: Permanently added 'vm2.example.com' (ED25519) to the list of known hosts.

$ lsblk
NAME   MAJ:MIN RM  SIZE RO TYPE MOUNTPOINTS
loop0    7:0    0  7.1M  1 loop 
sr0     11:0    1  2.4G  0 rom  
zram0  251:0    0  7.8G  0 disk [SWAP]
vda    252:0    0   30G  0 disk 
├─vda1 252:1    0    1G  0 part /boot
├─vda2 252:2    0    1G  0 part [SWAP]
└─vda3 252:3    0   28G  0 part /var
                                /sysroot/ostree/deploy/default/var
                                /etc
                                /sysroot

$ $ mount | grep -E '"/"|var|sysroot|etc'
/dev/vda3 on /sysroot type ext4 (ro,relatime,seclabel)
composefs on / type overlay (ro,relatime,seclabel,lowerdir=/run/ostree/.private/cfsroot-lower::/sysroot/ostree/repo/objects,redirect_dir=on,metacopy=on)
/dev/vda3 on /etc type ext4 (rw,relatime,seclabel)
/dev/vda3 on /sysroot/ostree/deploy/default/var type ext4 (rw,relatime,seclabel)
/dev/vda3 on /var type ext4 (rw,relatime,seclabel)

$ less /usr/lib/systemd/system/bootc-fetch-apply-updates.service
[jkastnin@localhost ~]$ systemctl status httpd
● httpd.service - The Apache HTTP Server
     Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; preset: disabled)
     Active: active (running) since Tue 2025-01-14 15:29:07 UTC; 28min ago
       Docs: man:httpd.service(8)
   Main PID: 829 (httpd)
…

Da ich im Vorfeld keine genaueren Angaben gemacht habe, wurde der Datenträger automatisch partitioniert. Die Installation lässt sich durch Kickstart-Dateien steuern. Dazu wird der Inhalt der Kickstart-Datei in die Datei config.toml eingefügt. Siehe hierzu Kapitel 4.9. Using bootc-image-builder to build ISO images with a Kickstart file in der RHEL-Dokumentation.

Fazit nach der Installation von RHEL image mode

  • Mit rootless podman wurde ein rhel9.5-bootc:test Image erstellt
  • Mit dem bootc-image-builder wurde ein ISO-Image erstellt, welchem ein Benutzer mit Passwort und öffentlichem SSH-Schlüssel hinzugefügt wurde und welches sich für die Installation von Offline-Systemen eignet
  • Das ISO-Image wurde genutzt, um RHEL image mode in einer VM zu installieren
  • Test von Login und einiger weniger Kommandos
  • Der konfigurierte Webserver wird ausgeführt und liefert die kleine Beispielwebseite aus

Auf dem Weg hier her wurde erklärt, wie Container-Images mittels podman-image-scp(1) ohne Container-Registry zwischen Benutzerkontexten und Hosts kopiert werden können. Es wurde gezeigt, wie eine einfache Container-Registry betrieben und genutzt werden kann.

Weitere Möglichkeiten zum Deployment von RHEL Bootc Images finden sich in der Dokumentation in Chapter 6. Deploying the RHEL bootc images. Darin findet sich auch ein Abschnitt, wie man das RHEL bootc image aus einer Registry mithilfe von Anaconda und Kickstart installiert.

Systemupdate und Rollback

Zu den Aufgaben des IT-Betriebs gehört es, Betriebssysteme zu aktualisieren, ihre Konfiguration neuen Anforderungen anzupassen und im Fehlerfall die letzten Änderungen schnell rückgängig machen zu können. Diesen Aufgaben widmen sich die beiden folgenden Abschnitte.

Bootc Image Installation aktualisieren bzw. Konfiguration ändern

Während RHEL package mode Systeme zur Laufzeit mit DNF bzw. YUM aktualisiert werden und mit diesen Werkzeugen Software (de-)installiert wird, ist der Ablauf bei RHEL image mode Systemen anders:

  1. Das RHEL Bootc Image wird aktualisiert
  2. Das aktualisierte Container-Image wird in einer Registry verfügbar gemacht
  3. Das aktualisierte Image wird in den Staging-Bereich des laufenden RHEL image mode Systems geladen
  4. Durch einen Neustart wird das aktualisierte Image geladen
  5. Bei Bedarf, z.B. bei auftretenden Problemen, kann das vorherige Image geladen werden

Aktualisierung des RHEL Bootc Image

Ich möchte die Pakete lsof, strace und tcpdump doch nicht in meiner Standardinstallation haben und sie aus der existierenden Installation entfernen. Deshalb kommentiere die entsprechenden Zeilen aus:

$ cat Containerfile
FROM registry.redhat.io/rhel9/rhel-bootc:9.5
ADD index.html /var/www/html/index.html
RUN dnf -y install httpd \
    openssh-server \
    bind-utils \
    net-tools \
    chrony \
    vim-enhanced \
    man-pages \
#    strace \
#    lsof \
#    tcpdump \
    bash-completion && \
    dnf clean all
RUN systemctl enable httpd sshd

Als Nächstes wird ein neues Image erstellt und in die Registry gepusht. Diesmal verwende ich den Tag 0.0.1, um für den Verlauf dieses Tutorials leichter den Überblick zu behalten:

$ podman build -t vm1.example.com:5000/rhel9.5-bootc:0.0.1 .
STEP 1/4: FROM registry.redhat.io/rhel9/rhel-bootc:9.5
STEP 2/4: ADD index.html /var/www/html/index.html
--> Using cache eb262e01451d150d95636b3771ca8b5985155edd45bcfef838726002f910a411
…
Successfully tagged vm1.example.com:5000/rhel9.5-bootc:0.0.1
ce3ec0f5ae5af0d27415c76aed480bfda51d39d5aeffdd78c7c06e29907c3d46

$ podman push --tls-verify=false vm1.example.com:5000/rhel9.5-bootc:0.0.1

Das zu verwendende Image aus dem System heraus wechseln

Der nun folgende Schritt wird in dem laufenden RHEL image mode System in VM 2 ausgeführt. In der RHEL-Dokumentation ist dieser Schritt in Abschnitt 8.1. Switching the container image reference beschrieben.

Für diesen Schritt ist eine funktionierende Namensauflösung zwischen VM 1 und VM 2 erforderlich. In der Laborumgebung kann dies mithilfe der Datei /etc/hosts erfolgen. Da in der Registry ein selbstsigniertes Zertifikat verwendet wird und das Kommando bootc keine Option --tls-verify besitzt, muss eine insecure registry in VM 2 konfiguriert werden. Der folgende Codeblock zeigt den Inhalt der Datei, mit der die insecure registry konfiguriert wird:

~]# cat /etc/containers/registries.conf.d/001-labregistry.conf
[[registry]]
location="vm1.example.com:5000"
insecure=true

Da bootc auch nicht über ein Login-Kommando verfügt und keinen Zugriff auf die Login-Informationen von Podman hat, wird in VM 2 ein Pull-Secret für bootc konfiguriert. Dazu wird eine Zeichenkette bestehend aus Benutzername:Passwort in Base-64 kodiert und zusammen mit der Registry-URL in die Datei /etc/ostree/auth.json geschrieben. Der folgende Code-Block zeigt dies mit den Beispielwerten aus diesem Tutorial:

~]# echo -n "registryuser:registrypass" | base64 -w 0 ; echo
cmVnaXN0cnl1c2VyOnJlZ2lzdHJ5cGFzcw==

~]# cat /etc/ostree/auth.json 
{
	"auths": {
		"vm1.example.com:5000": {
			"auth": "cmVnaXN0cnl1c2VyOnJlZ2lzdHJ5cGFzcw=="
		}
	}
}

Es gibt verschiedene Möglichkeiten, das Pull-Secret zu hinterlegen:

  • Manuell, wie gerade gezeigt
  • Mit einer Automationslösung wie z.B. Ansible zur Laufzeit des Zielsystems
  • Bei der Erstellung des Disk-Images mit bootc-image-builder
  • Bei hinreichend gesicherter Container-Registry direkt im RHEL Bootc Image

Siehe für weitere Hinweise hierzu Abschnitt 11.2 bis 11.4 im Anhang Managing users, groups, SSH keys, and secrets in image mode for RHEL.

Nun können wir mit dem folgenden Befehl von Image vm1.example.com:5000/rhel9.5-bootc:test zu Image vm1.example.com:5000/rhel9.5-bootc:0.0.1 wechseln:

~]# bootc switch vm1.example.com:5000/rhel9.5-bootc:0.0.1
layers already present: 67; layers needed: 2 (37.5 MB)
Fetched layers: 35.74 MiB in 23 seconds (1.58 MiB/s)                                                                   Deploying: done (5 seconds)                                                                                        Pruned images: 1 (layers: 0, objsize: 0 bytes)
Queued for next boot: vm1.example.com:5000/rhel9.5-bootc:0.0.1
  Version: 9.20250109.0
  Digest: sha256:c3925bc5d9618e803a3164f8f87a16333e4bf274469e72075d5cb50cf8ac51d9

Nach dem Wechsel befindet sich das ab nun zu verwendende Image zunächst im Staging-Bereich des lokalen Systems und wird beim nächsten Neustart aktiviert. Der Befehl bootc status gibt dazu übersichtlich Informationen aus, welches Image gestaged ist und welches aktuell verwendet wird:

~]# bootc status
Current staged image: vm1.example.com:5000/rhel9.5-bootc:0.0.1
    Image version: 9.20250109.0 (2025-01-14 19:58:27.484294313 UTC)
    Image digest: sha256:c3925bc5d9618e803a3164f8f87a16333e4bf274469e72075d5cb50cf8ac51d9
Current booted image: localhost/rhel9.5-bootc:test
    Image version: 9.20250109.0 (2025-01-11 12:40:29.172146867 UTC)
    Image digest: sha256:eee2c8ea204615a9341f3747a6156c5b7bc208bbcf60f0a5bb28f142f6b0aa54
No rollback image present

Nach einem Neustart wird der Status mit bootc status erneut kontrolliert und wir sehen, dass nun das Image aus der Registry verwendet wird und das vorherige Image für ein Rollback vorgehalten wird:

~]$ sudo bootc status
No staged image present
Current booted image: jkastnin-tpp1-rhel9-podman-1:5000/rhel9.5-bootc:0.0.1
    Image version: 9.20250109.0 (2025-01-14 19:58:27.484294313 UTC)
    Image digest: sha256:c3925bc5d9618e803a3164f8f87a16333e4bf274469e72075d5cb50cf8ac51d9
Current rollback image: localhost/rhel9.5-bootc:test
    Image version: 9.20250109.0 (2025-01-11 12:40:29.172146867 UTC)
    Image digest: sha256:eee2c8ea204615a9341f3747a6156c5b7bc208bbcf60f0a5bb28f142f6b0aa54

Automatische Aktualisierungen und wie man sie deaktivieren kann

Auf RHEL image mode Systemen existiert ein systemd.timer(5), welcher automatische Updates anstößt. Folgender Code-Block zeigt die Timer- und Service-Unit in VM 2:

$ systemctl status --no-pager bootc-fetch-apply-updates.{timer,service}
● bootc-fetch-apply-updates.timer - Apply bootc updates
     Loaded: loaded (/usr/lib/systemd/system/bootc-fetch-apply-updates.timer; disabled; preset: disabled)
     Active: active (waiting) since Wed 2025-01-15 08:29:37 UTC; 1h 1min ago
      Until: Wed 2025-01-15 08:29:37 UTC; 1h 1min ago
    Trigger: Wed 2025-01-15 10:28:13 UTC; 57min left
   Triggers: ● bootc-fetch-apply-updates.service
       Docs: man:bootc(8)

Jan 15 08:29:37 localhost systemd[1]: Started Apply bootc updates.

○ bootc-fetch-apply-updates.service - Apply bootc updates
     Loaded: loaded (/usr/lib/systemd/system/bootc-fetch-apply-updates.service; static)
     Active: inactive (dead)
TriggeredBy: ● bootc-fetch-apply-updates.timer
       Docs: man:bootc(8)

Ein Blick in die Service-Unit verrät, was passiert, wenn diese getriggert wird:

$ cat /usr/lib/systemd/system/bootc-fetch-apply-updates.service
[Unit]
Description=Apply bootc updates
Documentation=man:bootc(8)
ConditionPathExists=/run/ostree-booted

[Service]
Type=oneshot
ExecStart=/usr/bin/bootc update --apply --quiet

Das Kommando hinter ExecStart=:

  1. Prüft, ob ein neues Image in der Container-Registry verfügbar ist (Prüfung efolgt auf Digest nicht auf Tag)
  2. Falls ein neues Image verfügbar ist, wird dieses gestaged
  3. Der Host wird automatisch neugestartet, um das neue Image zu laden

Möchte man Aktualisierungen durch andere Verfahren steuern, kann die automatische Aktualisierung wie folgt gestoppt werden:

$ systemctl mask bootc-fetch-apply-updates.timer

Rollback

Angenommen, das System soll auf das zuvor verwendete Conatiner-Image zurückgerollt werden. So kann man sich zuvor mit bootc status einen Überblick verschaffen, welches Image als Rollback-Image eingetragen ist:

$ sudo bootc status
Current staged image: jkastnin-tpp1-rhel9-podman-1:5000/rhel9.5-bootc:0.0.2
    Image version: 9.20250109.0 (2025-01-15 09:36:38.866194063 UTC)
    Image digest: sha256:e68453dd17a45ad9243139b5cbb0565bbd97aa2bcd5a230c41e44d295281f9a7
Current booted image: jkastnin-tpp1-rhel9-podman-1:5000/rhel9.5-bootc:0.0.1
    Image version: 9.20250109.0 (2025-01-15 09:36:38.866194063 UTC)
    Image digest: sha256:e68453dd17a45ad9243139b5cbb0565bbd97aa2bcd5a230c41e44d295281f9a7
Current rollback image: jkastnin-tpp1-rhel9-podman-1:5000/rhel9.5-bootc:0.0.1
    Image version: 9.20250109.0 (2025-01-14 19:58:27.484294313 UTC)
    Image digest: sha256:c3925bc5d9618e803a3164f8f87a16333e4bf274469e72075d5cb50cf8ac51d9

Euch fällt evtl. auf, dass zwei Images den gleichen Tag, aber unterschiedliche SHA-256-Prüfsummen haben, und zwei Tags die gleiche Prüfsumme und unterschiedliche Tags. Lasst euch davon bitte nicht irritieren; dies ist nur meiner Spielerei geschuldet.

Bei einem Rollback wird das Image hinter dem Eintrag Current rollback image als Boot-Image verwendet. Ein Rollback wird mit folgendem Kommando ausgeführt:

$ sudo bootc rollback
Next boot: rollback deployment

Nur den Neustart muss man noch selbst durchführen. Nach dem Neustart sieht der Status wie folgt aus:

$ sudo bootc status
[sudo] password for jkastnin: 
No staged image present
Current booted image: jkastnin-tpp1-rhel9-podman-1:5000/rhel9.5-bootc:0.0.1
    Image version: 9.20250109.0 (2025-01-14 19:58:27.484294313 UTC)
    Image digest: sha256:c3925bc5d9618e803a3164f8f87a16333e4bf274469e72075d5cb50cf8ac51d9
Current rollback image: jkastnin-tpp1-rhel9-podman-1:5000/rhel9.5-bootc:0.0.1
    Image version: 9.20250109.0 (2025-01-15 09:36:38.866194063 UTC)
    Image digest: sha256:e68453dd17a45ad9243139b5cbb0565bbd97aa2bcd5a230c41e44d295281f9a7

Anhand der SHA-256-Prüfsumme ist zu erkennen, dass das vorherige rollback image nun den Platz mit dem vorherigen booted image gewechselt hat. Ein weiterer Aufruf von bootc rollback führt zu einem weiteren Image-Wechsel.

Hinweis: Wenn nach einem Update ein Rollback durchgeführt wird und der Systemd-Timer für automatische Updates nicht deaktiviert wurde, führt dieser Timer bei Ablauf zu einem erneuten Update des Systems.

Ende

Hier endet die Einführung in RHEL image mode. Wer dem Tutorial aufmerksam gefolgt ist, sollte an dieser Stelle in der Lage sein:

  • RHEL Bootc Images zu erstellen
  • Eine einfache Container-Registry mit Podman zu betreiben
  • Mit bootc-image-builder Disk-Images zu erstellen
  • Ein System im RHEL image mode zu installieren
  • Das installierte System zu aktualisieren
  • Zu einem anderen Image zu wechseln
  • Ein Rollback auf das vorherige Image durchzuführen

Wenn euch diese Einführung gefallen hat, freue ich mich, wenn ihr sie mit euren Netzwerken teilt. Nutzt gern die Kommentarfunktion, um mich wissen zu lassen, wie euch diese Einführung gefallen hat.

Falls ihr euch weitere Artikel rund um den RHEL image mode wünscht, teilt mir dies gern ebenfalls über die Kommentarfunktion mit.

Quellen und weiterführende Links

  1. What does a „Technology Preview“ feature mean?
  2. Technology Preview Features – Scope of Support
  3. Image mode for RHEL: 4 key use cases for streamlining your OS
  4. How to get list of the packages included in ‚Minimal Install‘ ? (Login notwendig)
  5. How Podman can transfer container images without a registry?
  6. How to implement a simple personal/private Linux container image registry for internal use
  7. Using image mode for RHEL to build, deploy, and manage operating systems
  8. Red Hat Container Registry Authentication
  9. Composing a customized RHEL system image
  10. Deploying a container image by using Anaconda and Kickstart
  11. 8.5. Turning off automatic updates

Einführung in das Advanced Intrusion Detection Environment (AIDE)

06. November 2023 um 05:00

Diese Einführung gibt Antworten auf die folgenden Fragen:

  • Was ist ein Intrusion Detection System?
  • Was ist AIDE?
  • Wie installiert und konfiguriert man es?
  • Wie nutzt man AIDE?

In dieser Einführung verwendete Betriebssysteme:

  • Debian 12 (Bookworm)
  • Red Hat Enterprise Linux (RHEL) 9

Um dieser Einleitung folgen zu können, solltet ihr mit den Grundlagen der Linux-Systemadministration vertraut sein und zumindest mit den folgenden Begriffen etwas anfangen können:

Einleitung

Ein Intrusion Detection System (englisch intrusion „Eindringen“, IDS) bzw. Angriffserkennungssystem ist ein System zur Erkennung von Angriffen, die gegen ein Computersystem oder Rechnernetz gerichtet sind. Das IDS kann eine Firewall ergänzen oder auch direkt auf dem zu überwachenden Computersystem laufen und so die Sicherheit von Netzwerken und Computersystemen erhöhen. Erkannte Angriffe werden meistens in Log-Dateien gesammelt und Benutzern oder Administratoren mitgeteilt; hier grenzt sich der Begriff von Intrusion Prevention System (englisch prevention „Verhindern“, IPS) ab, welches ein System beschreibt, das Angriffe automatisiert und aktiv verhindert.

Quelle: https://de.wikipedia.org/wiki/Intrusion_Detection_System (Letzter Abruf: 2023-09-08)

Die Gruppe der Intrusion Detection Systems (IDS) untergliedert sich in:

  • Host-basierte IDS, welche auf einem Host installiert und betrieben werden
  • Netz-basierte IDS, welche auf Netzwerkkomponenten installiert werden und die Kommunikation auf Netz-Ebene überwachen
  • Hybride IDS, welche die Komponenten aus den vorstehend genannten Gruppen kombinieren

Beim AIDE handelt es sich um ein Host-basiertes IDS. Es ist unter der GPL-2.0 lizenziert.

Zweck und Nutzen des AIDE

Aus dem vorhergehenden Abschnitt ist bekannt, dass es sich bei AIDE um ein Host-basiertes System zur Angriffs- bzw. Einbruchserkennung für Linux-Systeme handelt. Es stellt ein kostengünstiges Werkzeug dar, mit dem die Integrität eines Systems überprüft werden kann.

Es soll dem Administrator helfen, zu erkennen, ob Dateien oder Verzeichnisse eines Systems hinsichtlich ihres Inhalts und bzw. oder ihrer Eigenschaften wie z.B. Berechtigungen, SELinx-Kontext, erweiterte Attribute, etc. verändert wurden.

Grundlegende Funktionsweise des AIDE

  • Die zu überwachenden Dateien und Verzeichnisse werden durch reguläre Ausdrücke in der Konfigurationsdatei bestimmt
  • Basierend auf diesen Regeln wird eine Datenbank erstellt
  • Nach dem Initialisieren der Datenbank kann AIDE dazuverwendet werden, die Integrität der Dateien und Verzeichnisse zu überprüfen
    • Die initial erstellte Datenbank dient dabei als Referenz
    • Bei folgenen Überprüfungen wird eine neue Datenbank erstellt und mit der Referenzdatenbank verglichen
  • Änderungen an überwachten Dateien und Verzeichnissen werden in der Logdatei /var/log/aide/aide.log protokolliert

Schwäche von AIDE und Host-basierter IDS im Allgemeinen

  • Programm, Konfigurationsdatei(en), Datenbank und Logdatei liegen lokal auf dem jeweiligen Host
  • Angreifer, welche lokale Dateien verändern können, können potenziell auch die zu AIDE gehörenden Dateien verändern
  • Dadurch muss die Integrität der zur Integritätsprüfung eingesetzten IDS bezweifelt werden

Um diese Schwäche zu minimieren, sind folgende Maßnahmen durch Administratoren in Erwägung zu ziehen:

  • Logdateien an einen zentralen Loghost senden
  • Die AIDE-Referenzdatenbank außerhalb des zu überwachenden Hosts speichern
  • Den Abgleich gegen die AIDE-Referenzdatenbank außerhalb des zu überwachenden Hosts durchführen

Wie diese Maßnahmen umgesetzt werden können, beschreibe ich in einem folgenden Beitrag.

Auswirkungen auf die eigene Arbeitsweise

Werden beispielsweise Konfigurationsdateien unterhalb von /etc auf Änderungen hin überwacht, wird auch jede beabsichtige Änderung protokolliert. Das Programm kann zwischen legitimen und unautorisierten Änderungen nicht unterscheiden.

Daher ist nach jeder legitimen Änderungen die Referenzdatenbank zu aktualisieren. Ich empfehle, dies als einen Schritt in den Konfiguration-Management-Workflow zu integrieren und diese Aufgabe einen Automaten wie Ansible, Chef, Puppet o.ä. erledigen zu lassen. Dies erscheint mir weniger fehleranfällig zu sein als bei einer manuellen Durchführung, wo dieser Schritt sicher gern einmal vergessen wird.

Die Installation von AIDE

AIDE ist in den Paketquellen der meisten Distributionen vorhanden und kann wie folgt installiert werden.

RHEL 9

$ sudo dnf in aide
[sudo] password for tronde: 
Updating Subscription Management repositories.
Last metadata expiration check: 2:26:44 ago on Fri 08 Sep 2023 08:16:28 PM CEST.
Dependencies resolved.
================================================================================
 Package Arch      Version            Repository                           Size
================================================================================
Installing:
 aide    x86_64    0.16-100.el9       rhel-9-for-x86_64-appstream-rpms    154 k

Transaction Summary
================================================================================
Install  1 Package

Total download size: 154 k
Installed size: 354 k
Is this ok [y/N]: 
  • Obiger Code-Block zeigt die Installationsanweisung für RHEL 9
  • Die Konfigurationdatei /etc/aide.conf besitzt im Auslieferungszustand bereits 303 Zeilen; ohne Kommentare und Leerzeilen sind es immerhin noch 161
  • Den Aufbau der Datei erklärt die Manpage aide.conf(5)
  • Um AIDE sinnvoll nutzen zu können, sollte sich jeder Administrator mit dem Inhalt von /etc/aide.conf vertraut machen; oder würdet ihr einem Firewall-Regelwerk vertrauen, das ihr nicht kennt?
  • Im Abschnitt „Gedanken zur Konfiguration von AIDE“ findet ihr meine Gedanken und Hinweise zur Konfiguration

Debian 12 (Bookworm)

$ sudo apt install aide
[sudo] password for jkastning: 
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
  aide-common liblockfile-bin liblockfile1 libmhash2
Suggested packages:
  figlet
The following NEW packages will be installed:
  aide aide-common liblockfile-bin liblockfile1 libmhash2
0 upgraded, 5 newly installed, 0 to remove and 0 not upgraded.
Need to get 372 kB of archives.
After this operation, 1064 kB of additional disk space will be used.
Do you want to continue? [Y/n]
  • Obiger Code-Block zeigt die Installationsanweisung für Debian 12
  • Neben aide werden noch die Pakete aide-common, liblockfile-bin, liblockfile1 und `libmhash2` installiert
    • Neben der Konfigurationdatei /etc/aide/aide.conf installiert Debian auch das Verzeichnis /etc/aide/aide.conf.d, in welchem sich direkt nach der Installation schon etliche Konfigurationsdateien befinden:
$ ls -l /etc/aide/aide.conf.d/ | wc -l
212
  • Auch hier empfehle ich Administratoren, sich mit der Konfiguration zu beschäftigen und sich damit vertraut zu machen (siehe dazu auch aide.conf(5))
  • Im folgenden Abschnitt „Zur Konfiguration von AIDE“ findet ihr meine Gedanken und Hinweise zur Konfiguration

Zur Konfiguration von AIDE

Während AIDE in RHEL über eine einzige Datei (/etc/aide.conf) konfiguriert wird, gibt es in Debian eine Konfigurationsdatei (/etc/aide/aide.conf) und die Verzeichnisse /etc/aide/aide.conf.d sowie /etc/aide/aide.settings.d, welche weitere Dateien zur Konfiguration und Einstellungen beinhalten.

Eine AIDE-Konfigurationsdatei aide.conf besteht aus drei verschiedenen Arten von Zeilen:

  • Optionen, welche die Konfigurationsparameter und Gruppen definieren; aufgebaut sind diese nach dem Muster Parameter = Wert bzw. Gruppenname = Wert
  • Regeln, welche bestimmen, welche Dateien und Verzeichnisse in die Datenbank aufzunehmen sind und welche Attribute überwacht werden sollen
  • Macros, mit denen sich Variablen definieren lassen; z.B. definierte @@define foo bar die Variable foo mit dem Wert bar

AIDE kann die folgenden Attribute bzw. Elemente von Dateien auf Änderungen hin überwachen:

#p:      permissions
#i:      inode
#n:      number of links
#u:      user
#g:      group
#s:      size
#b:      block count
#m:      mtime
#a:      atime
#c:      ctime
#S:      check for growing size
#acl:           Access Control Lists
#selinux        SELinux security context
#xattrs:        Extended file attributes
#md5:    md5 checksum
#sha1:   sha1 checksum
#sha256:        sha256 checksum
#sha512:        sha512 checksum
#rmd160: rmd160 checksum
#tiger:  tiger checksum

Der folgende Code-Block zeigt die Definition der beiden Gruppen NORMAL und DIR (aus der /etc/aide.conf in RHEL 9), welche spezifizieren, welche Attribute überwacht werden sollen, wenn die jeweilige Gruppe in einer Regel verwendet wird.

NORMAL = p+i+n+u+g+s+m+c+acl+selinux+xattrs+sha512

# For directories, don't bother doing hashes
DIR = p+i+n+u+g+acl+selinux+xattrs

Welche Dateien und Verzeichnisse in die AIDE-Datenbank aufzunehmen bzw. auszuschließen sind durch reguläre Ausdrücke bestimmt. Der nächste Code-Block zeigt drei Beispiele, die anschließend erläutert werden:

/etc NORMAL
=/var/log/ DIR
=/home DIR
!/dev
  • Das Verzeichnis /etc und alle darunterliegenden Dateien und Verzeichnisse werden in die AIDE-Datenbank aufgenommen und mit den Regeln aus der Gruppe NORMAL verknüpft
  • Nur das Verzeichnis /var/log/ und die direkt darunter befindlichen Dateien und Verzeichnisse werden in die AIDE-Datenbank aufgenommen und mit der Gruppe DIR verknüpft; der Inhalt der Unterverzeichnisse wird nicht in die Datenbank aufgenommen
  • Ausschließlich /home wird aufgenommen; nicht jedoch der Inhalt davon
  • Das Verzeichnis /dev und alle darunterliegenden Dateien und Verzeichnisse werden nicht in die AIDE-Datenbank aufgenommen

Initialisierung der AIDE-Datenbank

Mit Sicherheit und Vertrauen ist das immer so eine Sache. Am besten ist es stets, wenn Vertrauen für Sicherheit nicht erforderlich ist. Daher rate ich an dieser Stelle nochmals ausdrücklich, die AIDE-Konfiguration zu überprüfen und ggf. den eigenen Bedürfnissen anzupassen… Nur um direkt gegen meinen eigenen Rat zu verstoßen.

Der Umfang an Regeln ist in beiden Systemen so groß, dass ich in dieser Einführung nicht alle einzeln erläutern kann. Ich vertraue für diese Einführung daher darauf, dass die Distributionen eine sinnvolle Konfiguration ausliefern.

Initialisiert wird die Datenbank je nach Distribution mit einem leicht abgewandelten Befehl.

Beispiel mit RHEL 9

$ sudo time aide --init
Start timestamp: 2023-09-18 20:50:06 +0200 (AIDE 0.16)
AIDE initialized database at /var/lib/aide/aide.db.new.gz

Number of entries:      54290

---------------------------------------------------
The attributes of the (uncompressed) database(s):
---------------------------------------------------

/var/lib/aide/aide.db.new.gz
  MD5      : xOf5Bs/Hb2Caa5i2K41fbg==
  SHA1     : KoCkqwfe+oZ2rlQTAU+AWQBrt2I=
  RMD160   : eM6IC68wq1VRhDbyHhRqy+63ldI=
  TIGER    : lQC+UTBqUm0iEDdKA0u7THqAPLNQxegH
  SHA256   : vdzjqIr/m7FgjXdZLQG+D1Pvf75WlF17
             WYiA6gU+4Pg=
  SHA512   : EdMB0I92j05zlfjXHcJFasZCAvkrK9br
             6zQEcDfD4IDM8D9c1Sz0r7A5tJTKGXVZ
             AFCOJR65j66ihKB0suFS6w==


End timestamp: 2023-09-18 20:50:19 +0200 (run time: 0m 13s)

Die erzeugte Datenbank wird umbenannt, indem das new aus dem Dateinamen entfernt wird.

$ sudo mv /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz

Die umbenannte Datei stellt die Referenzdatenbank dar, gegen die mit dem Befehl aide --check geprüft werden kann, ob es Änderungen im Dateisystem gab.

In diesem Artikel gebe ich mich damit zufrieden, dass die Datenbank auf dem zu überwachenden Host liegt und damit dem Risiko unterliegt, von einem Angreifer manipuliert zu werden (siehe zu den Schwächen oben). Ich gehe in einem Folgeartikel darauf ein.

Beispiel mit Debian 12

Unter Debian wird die AIDE-Datenbank mit dem Wrapper-Script aideinit (siehe aideinit(8)) initialisiert. Das README unter /usr/share/doc/aide-common/README.Debian.gz warnt bereits davor, dass Debian mit zu restriktiven Einstellungen daherkommt:

Configuring AIDE the Debian way
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AIDE’s Debian default configuration takes a very paranoid stance and
is likely to report more changes than you will need to focus your
attention on.

/usr/share/doc/aide-common/README.Debian.gz

Lassen wir uns überraschen…

$ sudo time aideinit
Running aide --init...
7044.57user 54.97system 2:00:40elapsed 98%CPU (0avgtext+0avgdata 132408maxresident)k
231120192inputs+88320outputs (12major+66397minor)pagefaults 0swaps

Das hat deutlich länger gedauert und endete mit einer deutlich kürzeren Ausgabe. Die erzeugte Datenbank ist jedoch wie bei RHEL im Verzeichnis /var/lib/aide/ zu finden.

:~# ls -l /var/lib/aide/
total 43536
-rw------- 1 root  root  22286930 Sep 19 15:13 aide.db
-rw------- 1 _aide _aide 22286930 Sep 19 15:13 aide.db.new
:~# qm start 102
:~# file /var/lib/aide/aide.db.new 
/var/lib/aide/aide.db.new: gzip compressed data, max compression, from Unix, original size modulo 2^32 44239215
:~# file /var/lib/aide/aide.db
/var/lib/aide/aide.db: gzip compressed data, max compression, from Unix, original size modulo 2^32 44239215

Warum die Erstellung so viel länger gedauert hat, weiß ich nicht. Ich habe keine Idee dazu. Auch Debian erzeugt eine gzip-komprimierte Datenbank, auch wenn hier keine Dateiendung darauf hinweist. Ich finde das etwas seltsam, behalte die Standardeinstellung für diese Einführung jedoch bei. Dafür muss die Datei nicht manuell umbenannt werden, da direkt eine Kopie erstellt wird, die als Referenzdatenbank genutzt werden kann.

Im Gegensatz zu RHEL wird unter Debian auch ein Timer namens dailyaidecheck.timer installiert, welcher täglich einen automatischen Check auf Veränderungen durchführt. Allerdings ist es für einen Angreifer ein Leichtes, diese Timer-Unit zu deaktivieren.

Auf Änderungen prüfen

Unter Debian und RHEL werden die in der Referenzdatenbank enthaltenen Elemente mit folgendem Befehl auf Änderungen überprüft:

:~# aide --check                                    # unter RHEL
:~# aide --check --config /etc/aide/aide.conf       # unter Debian

Ich habe meine Testsysteme ein paar Tage laufen lassen und einen AIDE-Integritätscheck durchgeführt. Hier das Ergebnis für ein RHEL 9 System:

$ sudo aide --check
Start timestamp: 2023-09-26 19:54:59 +0200 (AIDE 0.16)                          
AIDE found differences between database and filesystem!!                        
                                                                                
Summary:                                                                        
  Total number of entries:      54290   
  Added entries:                0                                               
  Removed entries:              0                                               
  Changed entries:              3                                               
                                                                                
---------------------------------------------------                             
Changed entries:                                                                
---------------------------------------------------               
                                                                                
f = ...    . ..S : /var/log/insights-client/insights-client.log.3               
f < ...    . ... : /var/log/rhsm/rhsmcertd.log                                  
f < ...    . ... : /var/log/squid/cache.log                                     
                                                                                
---------------------------------------------------              
Detailed information about changes:
---------------------------------------------------                             
                                                                                
File: /var/log/insights-client/insights-client.log.3                            
  SELinux  : system_u:object_r:insights_clien | unconfined_u:object_r:insights_c
             t_var_log_t:s0                   | lient_var_log_t:s0
                                                                                
File: /var/log/rhsm/rhsmcertd.log                                               
  Size     : 1426                             | 1343                            
                                                                                
File: /var/log/squid/cache.log                                                  
  Size     : 6230                             | 334              
                                                                                
                                                                                
---------------------------------------------------
The attributes of the (uncompressed) database(s):                               
---------------------------------------------------                             
                                                                                
/var/lib/aide/aide.db.gz                                                        
  MD5      : xOf5Bs/Hb2Caa5i2K41fbg==   
  SHA1     : KoCkqwfe+oZ2rlQTAU+AWQBrt2I=                                       
  RMD160   : eM6IC68wq1VRhDbyHhRqy+63ldI=                                       
  TIGER    : lQC+UTBqUm0iEDdKA0u7THqAPLNQxegH                                   
  SHA256   : vdzjqIr/m7FgjXdZLQG+D1Pvf75WlF17                                   
             WYiA6gU+4Pg=                                                       
  SHA512   : EdMB0I92j05zlfjXHcJFasZCAvkrK9br                                   
             6zQEcDfD4IDM8D9c1Sz0r7A5tJTKGXVZ                     
             AFCOJR65j66ihKB0suFS6w==                                           
                                                                                
                                                                                
End timestamp: 2023-09-26 19:55:12 +0200 (run time: 0m 13s)

Die Integritätsprüfung in obigen Code-Block führt Änderungen an drei Dateien auf:

  • Das SELinux-Label einer Log-Datei hat sich geändert
  • Die Größe von zwei weiteren Log-Dateien hat sich geändert
  • Die Änderungen werden in einer Zusammenfassung und im Detail ausgegeben
  • Eine Erläuterung zur Ausgabe unter „Changed entries“ findet sich im Absatz summarize_changes in aide.conf(5).
  • Man erhält Informationen darüber, was sich geändert hat, nicht warum sich diese Änderungen ergeben haben

Abbruch meiner Tests unter Debian 12 (Bookworm)

Unter Debian hat die Integritätsprüfung über Stunden einen CPU-Kern blockiert. Der Prozess ist in einem futex Syscall hängen geblieben.

Ob es an meinem System liegt oder AIDE unter Debian generell ein Problem hat, kann ich nicht sagen. Ich bin der Sache nicht weiter nachgegangen.

Falls jemand von euch AIDE unter Debian einsetzt und dies liest, freue ich mich, wenn ihr eure Erfahrungen mit mir teilt.

Die Referenzdatenbank aktualisieren

Mit dem Befehl aide --update wird die Datenbank-Integrität geprüft und eine neue Datenbank /var/lib/aide/aide.db.new.gz erzeugt. Die bestehende Referenzdatenbank /var/lib/aide/aide.db.gz wird dabei nicht überschrieben und bleibt zunächst erhalten. Möchte man diese länger aufbewahren, kann man sie umbenennen und bspw. einen Zeitstempel anhängen. Anschließend erzeugt man mit mv /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz eine neue Referenzdatenbank.

Der folgende Code-Block zeigt die Ausgabe von aide --update unter RHEL 9.

~]# aide --update                                            
Start timestamp: 2023-09-26 20:13:52 +0200 (AIDE 0.16)
AIDE found differences between database and filesystem!!
New AIDE database written to /var/lib/aide/aide.db.new.gz
                                                                                
Summary:                                
  Total number of entries:      54290
  Added entries:                0
  Removed entries:              0    
  Changed entries:              3                                               
                                                                                
---------------------------------------------------
Changed entries:                                                                
---------------------------------------------------
                                                                                
f = ...    . ..S : /var/log/insights-client/insights-client.log.3
f < ...    . ... : /var/log/rhsm/rhsmcertd.log
f < ...    . ... : /var/log/squid/cache.log

---------------------------------------------------        
Detailed information about changes:                                             
---------------------------------------------------

File: /var/log/insights-client/insights-client.log.3                     [0/100]
  SELinux  : system_u:object_r:insights_clien | unconfined_u:object_r:insights_c
             t_var_log_t:s0                   | lient_var_log_t:s0
                                                                                
File: /var/log/rhsm/rhsmcertd.log                                               
  Size     : 1426                             | 1343                            
                                                                                
File: /var/log/squid/cache.log                                                  
  Size     : 6230                             | 334                             
                                        
                                                                                
---------------------------------------------------                             
The attributes of the (uncompressed) database(s):
---------------------------------------------------         
                                        
/var/lib/aide/aide.db.gz       
  MD5      : xOf5Bs/Hb2Caa5i2K41fbg==                                           
  SHA1     : KoCkqwfe+oZ2rlQTAU+AWQBrt2I=                                       
  RMD160   : eM6IC68wq1VRhDbyHhRqy+63ldI=              
  TIGER    : lQC+UTBqUm0iEDdKA0u7THqAPLNQxegH                                   
  SHA256   : vdzjqIr/m7FgjXdZLQG+D1Pvf75WlF17         
             WYiA6gU+4Pg=                                                       
  SHA512   : EdMB0I92j05zlfjXHcJFasZCAvkrK9br            
             6zQEcDfD4IDM8D9c1Sz0r7A5tJTKGXVZ                                   
             AFCOJR65j66ihKB0suFS6w==   
                                        
/var/lib/aide/aide.db.new.gz     
  MD5      : Dgoc1/L5F1UfXPAQRvMdTg==
  SHA1     : 23RFwEBIh0kw/3TiiVAh39Fzx0Q=                                       
  RMD160   : 1szie2CW1dyLmaKFg01j48Fr+Us=                                       
  TIGER    : TgdG3zNAOSZH2D9jkyvBves8PtjC0lCR      
  SHA256   : hjn9vxFxg4KoVwT3YvgU347EhvTCg5ey                                   
             lfktpr/OrcA=                                                       
  SHA512   : x6E3YPa0eILD3nZqDt6N755KSmPRFOz8                                   
             lhKD9CimYScSpxyoVxJAVWiozR8KUwkt                    
             Ao7mgy3BgtUA0MZuNMv43w==                                           
                                                                                

End timestamp: 2023-09-26 20:14:03 +0200 (run time: 0m 11s)
~]# ls -l /var/lib/aide                                      
total 6184                                                                      
-rw-------. 1 root root 3163359 Sep 18 20:50 aide.db.gz                         
-rw-------. 1 root root 3163384 Sep 26 20:14 aide.db.new.gz

Ende

An dieser Stelle endet die Einführung in das Advanced Intrusion Detection Environment (AIDE). Kommt das Ende für euch abrupt? Ist es ein Ende mit Schrecken? Lasst es mich gern wissen.

In dieser Einführung habe ich beschrieben, was Intrusion-Detection-Systeme im Allgemeinen und AIDE im Speziellen sind. Ich bin auf deren Nutzen eingegangen und habe die Schwächen von AIDE als Host-basiertem IDS benannt. Installation, Konfiguration, Integritäts-Check und Aktualisierung der Datenbank wurden erklärt und mit Beispielen belegt.

Was ist nun von AIDE zu halten?

Nun, es ist besser als nichts. Man besitzt damit ein Werkzeug, mit dem sich Änderungen im Dateisystem erkennen lassen. Man muss sich jedoch der Schwächen Host-basierter IDS bewusst sein. Ein Angreifer mit lokalen root-Rechten kann dieses Werkzeug mit wenig Aufwand unschädlich machen bzw. die eigenen Änderungen verschleiern.

Sicher kann man einen Integritätscheck automatisiert alle 5 Minuten durchführen und für Änderungen eine E-Mail-Benachrichtigung einrichten. Doch wirkt dies etwas hemdsärmelig. Daher werde ich dieses Thema in einem späteren Artikel aufgreifen und zeigen, wie man AIDE in einen Automations- bzw. Konfigurations-Management-Prozess einbinden kann.

Container mit podman-auto-update automatisch aktualisieren

28. August 2023 um 05:00

In diesem Tutorial zeige ich euch, wie ihr eine automatische Aktualisierung für Container in rootless-Podman-Umgebungen konfigurieren und diese Container als systemd-Services verwalten könnt.

Das Tutorial gliedert sich in folgende Abschnitte:

  1. Anwendungsfälle
  2. Voraussetzungen
  3. Umgebung und verwendetes Container-Image
  4. Konfiguration des systemd-Service mit Auto-Update-Funktion
  5. Container (automatisch) aktualisieren

Wer sich nicht für die möglichen Anwendungsfälle interessiert und lieber gleich starten möchte, kann den ersten Abschnitt überspringen. Die übrigen Abschnitte sollten in der angegebenen Reihenfolge gelesen werden.

Anwendungsfälle

  • Container werden auf einem Single-Container-Host ausgeführt und nicht in K8s-Umgebungen
  • Man vertraut dem Anbieter, dass dieser stabile und nutzbare Container-Images bereitstellt
  • Es soll regelmäßig geprüft werden, ob aktualisierte Container-Images vorhanden sind
  • Sind aktuellere Images vorhanden, sollen laufende Container entfernt und unter Verwendung der aktuellen Images neu erstellt werden

Voraussetzungen

Um diesem Tutorial folgen zu können, benötigt ihr einen Host mit einer rootless-Podman-Umgebung. Podman muss dabei in der Version >= 3.3 verfügbar sein. In der folgenden Liste findet ihr einige Links, die euch helfen, eine solche Umgebung aufzusetzen.

Darüber hinaus solltet ihr Manpages lesen können.

Umgebung und verwendetes Container-Image

Das Betriebssystem spielt eine untergeordnete Rolle, da wir durch die Verwendung von Containern die Anwendung vom Betriebssystem entkoppeln. Alle zur Ausführung der Anwendung notwendigen Abhängigkeiten sind im Container-Image enthalten.

Uptime Kuma ist eine schlanke und schnelle Monitoring-Anwendung, welche unter anderem als Container-Image bereitgestellt wird. Ich habe die Anwendung als Beispiel für dieses Tutorial ausgewählt, da ich die Anwendung selbst nutzen möchte und so Synergieeffekte nutzen kann.

Wer ein anderes Container-Image nutzen möchte, muss in den folgenden Beispielen louislam/uptime-kuma:latest durch den fully qualified container name des zu nutzenden Images ersetzen.

Für die Konfiguration werden die auf dem System verfügbaren Podman-Manpages benutzt.

Konfiguration des Systemd-Service mit Auto-Update-Funktion

Bei den folgenden Schritten habe ich mich am Beispiel aus podman-auto-update(1) orientiert. Ich zeige zuerst den jeweils auszuführenden Befehl in einem Code-Block, gefolgt von einer Erläuterung der genutzten Optionen.

Podman-Volume erzeugen

$ podman volume create uptime-kuma
uptime-kuma

Um Daten persistent speichern zu können, müssen diese außerhalb des Containers abgelegt werden. Der dargestellte Befehl erzeugt ein Podman-Volume mit dem Namen „uptime-kuma“.

Mit dem folgenden Befehl lassen sich detaillierte Informationen zum gerade erstellten Volume anzeigen:

$ podman volume inspect uptime-kuma
[
     {
          "Name": "uptime-kuma",
          "Driver": "local",
          "Mountpoint": "/home/tronde/.local/share/containers/storage/volumes/uptime-kuma/_data",
          "CreatedAt": "2023-08-22T20:52:06.477341481+02:00",
          "Labels": {},
          "Scope": "local",
          "Options": {},
          "MountCount": 0,
          "NeedsCopyUp": true,
          "NeedsChown": true
     }
]

Der Schlüssel Mountpoint enthält den Pfad im lokalen Dateisystem, in dem das Volume erstellt wurde.

Manpages zum Nachschlagen:

  • podman-volume(1)
  • podman-volume-create(1)
  • podman-volume-inspect(1)

Container starten

$ podman run --label "io.containers.autoupdate=registry" -d -p 3001:3001 -v uptime-kuma:/app/data:Z --name=uptime-kuma docker.io/louislam/uptime-kuma:latest
Trying to pull docker.io/louislam/uptime-kuma:latest...
Getting image source signatures
Copying blob d7ca72974892 done  
Copying blob 475646a04a73 done  
Copying blob 1d496c24aec8 done  
Copying blob 6a3727d8681d done  
Copying blob b00c91ba9805 done  
Copying blob ddade83992f9 done  
Copying blob b8454ed537a7 done  
Copying blob 849e609eff67 done  
Copying blob f861188db6a1 done  
Copying blob 5f3c3e6d7f1c done  
Copying blob 4f4fb700ef54 skipped: already exists  
Copying blob 68b7bcf7c878 done  
Copying config fb3a3565b2 done  
Writing manifest to image destination
Storing signatures
ad7b049d9b84962311f5bafb5329f59961d8a031e54a571f079b8243ea8059ee
  • podman run ist das Kommando, mit dem ein neuer Container gestartet wird
  • Die Option --label "io.containers.autoupdate=registry" gibt an, dass Podman die Remote-Registry prüft, ob dort ein aktualisiertes Image vorhanden ist; dieses Label ist Voraussetzung, um die Auto-Update-Funktion nutzen zu können
  • Mit der Option -d wird der Container im Hintergrund gestartet und die Container-ID auf STDOUT ausgegeben
  • Durch -p 3001:3001 wird der Host-Port 3001 mit dem Port der Anwendung (ebenfalls 3001) im Container verbunden
  • Die Option -v uptime-kuma:/app/data:Z hängt das im vorhergehenden Schritt erstellte Podman-Volume in das Verzeichnis /app/data innerhalb des Containers ein; :Z sorgt dafür, dass der SELinux-Kontext korrekt gesetzt wird
  • --name=uptime-kuma spezifiziert den Namen des Containers; dieser ist etwas leichter zu merken als die Container-ID
  • Der Befehl endet mit dem fully qualified container name docker.io/louslam/uptime-kuma:latest
  • Die letzte Zeile des Code-Blocks enthält die Container-ID

Manpages zum Nachschlagen:

  • podman-run(1)
  • podman-auto-update(1)

Systemd-Service-Unit mit podman-generate-systemd erstellen

$ podman generate systemd --name --new uptime-kuma
# container-uptime-kuma.service
# autogenerated by Podman 4.4.1
# Tue Aug 22 21:29:46 CEST 2023

[Unit]
Description=Podman container-uptime-kuma.service
Documentation=man:podman-generate-systemd(1)
Wants=network-online.target
After=network-online.target
RequiresMountsFor=%t/containers

[Service]
Environment=PODMAN_SYSTEMD_UNIT=%n
Restart=on-failure
TimeoutStopSec=70
ExecStart=/usr/bin/podman run \
	--cidfile=%t/%n.ctr-id \
	--cgroups=no-conmon \
	--rm \
	--sdnotify=conmon \
	--replace \
	--label io.containers.autoupdate=registry \
	-d \
	-p 3001:3001 \
	-v uptime-kuma:/app/data:Z \
	--name=uptime-kuma docker.io/louislam/uptime-kuma:latest
ExecStop=/usr/bin/podman stop \
	--ignore -t 10 \
	--cidfile=%t/%n.ctr-id
ExecStopPost=/usr/bin/podman rm \
	-f \
	--ignore -t 10 \
	--cidfile=%t/%n.ctr-id
Type=notify
NotifyAccess=all

[Install]
WantedBy=default.target
  • Der Befehl gibt den Inhalt der generierten Service-Unit auf STDOUT aus
  • Die Option --name verwendet den Namen des Containers anstelle der Container-ID im Dateinamen der Service-Unit (hier: container-uptime-kuma.service)
  • Wichtig ist die Option --new, um Container von aktualisierten Images erstellen zu können; ohne diese Option können Systemd-Units Container nur unter Verwendung des ursprünglichen Images starten und stoppen und ein Auto-Update ist nicht möglich
  • Der folgende Code-Block fügt dem Befehl die Option --files hinzu, um eine Service-Unit-Datei zu erstellen
$ podman generate systemd --name --new --files uptime-kuma
/home/tronde/container-uptime-kuma.service

Manpages zum Nachschlagen:

  • podman-auto-update(1)
  • podman-generate-systemd(1)

Die erstellte Systemd-Unit aktivieren und starten

$ mv -Z container-uptime-kuma.service ~/.config/systemd/user/container-uptime-kuma.service
$ systemctl --user daemon-reload
  • Der erste Befehl verschiebt die Service-Unit in einen Pfad, wo systemd sie findet und einlesen kann
  • Die Option -Z stellt sicher, dass die Datei den SELinux-Kontext des Zielverzeichnisses zugewiesen bekommt, andernfalls kann systemd die Datei ggf. nicht verarbeiten
  • Durch den zweiten Befehl wird die Unit-Datei systemd bekannt gemacht
  • An dieser Stelle ist der neue Systemd-Service geladen, jedoch inaktiv
$ systemctl --user status container-uptime-kuma.service
○ container-uptime-kuma.service - Podman container-uptime-kuma.service
     Loaded: loaded (/home/tronde/.config/systemd/user/container-uptime-kuma>
     Active: inactive (dead)
       Docs: man:podman-generate-systemd(1)
$ podman stop uptime-kumauptime-kuma
$ podman rm uptime-kumauptime-kuma
$ systemctl --user start container-uptime-kuma.service
$ systemctl --user status container-uptime-kuma.service
● container-uptime-kuma.service - Podman container-uptime-kuma.service     Loaded: loaded (/home/tronde/.config/systemd/user/container-uptime-kuma>     Active: active (running) since Tue 2023-08-22 21:59:56 CEST; 14s ago
…
  • Der erste Befehl in obigen Code-Block prüft den aktuellen Status des Service
  • Der zweite und dritte Befehl stoppen und entfernen den laufenden Container, den wir weiter oben gestartet haben
  • Befehl Nummer 4 startet den Uptime-Kuma-Service
  • Befehl Nummer 5 prüft den neuen Status des Service; dieser ist nun up-and-running

Manpages zum Nachschlagen:

  • mv(1)
  • systemd.unit(5)
  • systemctl(1)

Auf neue Container-Images prüfen

$ podman auto-update --dry-run --format "{{.Image}} {{.Updated}}"
docker.io/louislam/uptime-kuma:latest false
  • Durch die Option --dry-run wird sichergestellt, dass nur auf die Verfügbarkeit neuer Images geprüft wird, es werden jedoch keine Pull-Operationen ausgeführt und keine Container neu erstellt
  • Es wird eine Liste von Container-Images ausgegeben, die mit dem Label io.containers.autoupdate=registry gestartet wurden
  • Die erste Spalte enthält den Image-Namen
  • Die zweite Splate zeigt an, ob ein Update verfügbar ist; in diesem Fall ist kein Update verfügbar (false)

Container (automatisch) aktualisieren

Wurde die Konfiguration erfolgreich abgeschlossen, können die entsprechenden Container durch folgenden Befehl manuell aktualisiert werden:

$ podman auto-update
            UNIT                           CONTAINER                   IMAGE                                  POLICY      UPDATED
            container-uptime-kuma.service  df21116f2573 (uptime-kuma)  docker.io/louislam/uptime-kuma:latest  registry    false

Leider ist aktuell kein Update verfügbar, weshalb es hier nichts zu tun gibt und der Status von Updated gleich false ist.

Podman bringt bei der Installation die beiden systemd units podman-auto-update.timer und podman-auto-update.service mit, welche zumindest unter RHEL 9 manuell aktiviert werden müssen:

$ systemctl --user enable podman-auto-update.{service,timer}
Created symlink /home/tronde/.config/systemd/user/default.target.wants/podman-auto-update.service → /usr/lib/systemd/user/podman-auto-update.service.
Created symlink /home/tronde/.config/systemd/user/timers.target.wants/podman-auto-update.timer → /usr/lib/systemd/user/podman-auto-update.timer.

$ systemctl --user start podman-auto-update.timer
$ systemctl --user status podman-auto-update.{service,timer}
○ podman-auto-update.service - Podman auto-update service
     Loaded: loaded (/usr/lib/systemd/user/podman-auto-update.service; enabled; preset: disabled)
     Active: inactive (dead)
TriggeredBy: ● podman-auto-update.timer
       Docs: man:podman-auto-update(1)

● podman-auto-update.timer - Podman auto-update timer
     Loaded: loaded (/usr/lib/systemd/user/podman-auto-update.timer; enabled; preset: disabled)
     Active: active (waiting) since Sat 2023-09-02 20:56:09 CEST; 1s ago
      Until: Sat 2023-09-02 20:56:09 CEST; 1s ago
    Trigger: Sun 2023-09-03 00:12:22 CEST; 3h 16min left
   Triggers: ● podman-auto-update.service
  • Der Timer startet jeden Tag um Mitternacht den Auto-Update-Service
  • Der Service prüft, ob aktualisierte Container-Images verfügbar sind und führt ggf. ein Update der Container durch
  • Schlägt ein Start nach Aktualisierung des Container-Images fehl, wird der Dienst automatisch von der vorherigen Image-Version gestartet; siehe --rollback in podman-auto-update(1)
  • Der folgende Code-Block zeigt den Status, nachdem ein Update durchgeführt wurde
$ systemctl --user --no-pager -l status podman-auto-update
○ podman-auto-update.service - Podman auto-update service
     Loaded: loaded (/usr/lib/systemd/user/podman-auto-update.service; enabled; preset: disabled)
     Active: inactive (dead) since Sun 2023-09-03 00:12:56 CEST; 7h ago
TriggeredBy: ● podman-auto-update.timer
       Docs: man:podman-auto-update(1)
    Process: 309875 ExecStart=/usr/bin/podman auto-update (code=exited, status=0/SUCCESS)
    Process: 310009 ExecStartPost=/usr/bin/podman image prune -f (code=exited, status=0/SUCCESS)
   Main PID: 309875 (code=exited, status=0/SUCCESS)
        CPU: 5.128s

Sep 03 00:12:50 example.com podman[309875]: Copying config sha256:d56b643e048f2d351ed536ec9a588555dfd4c70de3c8d510ed61078a499ba464
Sep 03 00:12:50 example.com podman[309875]: Writing manifest to image destination
Sep 03 00:12:50 example.com podman[309875]: Storing signatures
Sep 03 00:12:51 example.com podman[309875]: 2023-09-03 00:12:41.98296115 +0200 CEST m=+1.880671312 image pull  docker.io/louislam/uptime-kuma:latest
Sep 03 00:12:55 example.com podman[309875]:             UNIT                           CONTAINER                   IMAGE                                  POLICY      UPDATED
Sep 03 00:12:55 example.com podman[309875]:             container-uptime-kuma.service  814407c7312c (uptime-kuma)  docker.io/louislam/uptime-kuma:latest  registry    true
Sep 03 00:12:56 example.com podman[310009]: fb3a3565b2da641402e99594e09b3cdadd1b9aa84f59e7960b9961662da5ff65
Sep 03 00:12:56 example.com podman[310009]: 2023-09-03 00:12:55.421998943 +0200 CEST m=+0.020260134 image remove fb3a3565b2da641402e99594e09b3cdadd1b9aa84f59e7960b9961662da5ff65 
Sep 03 00:12:56 example.com systemd[686]: Finished Podman auto-update service.
Sep 03 00:12:56 example.com systemd[686]: podman-auto-update.service: Consumed 5.128s CPU time.

Ich hoffe, das Tutorial hat euch gefallen und konnte euch einen Eindruck vermitteln, wie man automatische Updates für Container konfigurieren kann.

Utilize PowerCLI to resize VMDK files of multiple VMs

13. Juni 2023 um 19:20

This is the translated version of an article written in German originally. I translated it as a non-German speaking person has shown interest in the topic.

Disclaimer: This tutorial comes without warranty and support. Use at your own risk.

In this tutorial, I would like to show a minimal example on how selected VMDK files of specific VMs can be resized with using the PowerCLI.

This is useful, for example, when so many VMs are affected that the time and effort required to manually enlarge them via the vSphere (web) client seems too great.

Only the resizing of the VMDK file is considered here. The subsequent resizing of the partition and file system within the guest operating system, which is also necessary, is not part of this tutorial.

Goal

For a minimal example, from a group of VMs the second and third hard disk of VM-Test-5 and VM-Test-6 are to be enlarged. The respective second hard disk is to be enlarged from 250 GB to 500 GB and the respective third hard disk is to be enlarged from 400 GB to 800 GB.

Requirements

A working installation of the VMware PowerCLI and the ability to access the vCenter Server is a prerequisite to follow this tutorial.

Here we go

The following code block shows how the necessary information about the VMs is read out to be processed.

PowerCLI C:\Scripts> Get-VM | Where-Object {$_ | Select-String -pattern "VM-Test-\d"}

Name                 PowerState Num CPUs MemoryGB
----                 ---------- -------- --------
VM-Test-5        PoweredOn  4        24.000
VM-Test-7        PoweredOn  4        16.000
VM-Test-6        PoweredOn  4        24.000


PowerCLI C:\Scripts> Get-VM | Where-Object {$_ | Select-String -pattern "VM-Test-[5,6]{1}"}

Name                 PowerState Num CPUs MemoryGB
----                 ---------- -------- --------
VM-Test-5        PoweredOn  4        24.000
VM-Test-6        PoweredOn  4        24.000


PowerCLI C:\Scripts> $VM = Get-VM | Where-Object {$_ | Select-String -pattern "VM-Test-[5,6]{1}"}
PowerCLI C:\Scripts> Get-VM $VM | Get-HardDisk | FT Parent, Name, CapacityGB -AutoSize

Parent        Name        CapacityGB
------        ----        ----------
VM-Test-5 Hard disk 1         40
VM-Test-5 Hard disk 2        250
VM-Test-5 Hard disk 3        400
VM-Test-5 Hard disk 4         80
VM-Test-6 Hard disk 1         40
VM-Test-6 Hard disk 2        250
VM-Test-6 Hard disk 3        400
VM-Test-6 Hard disk 4         80

From the above output you can see that we want to enlarge the VMDK files which are called „Hard disk 2“ and „Hard disk 3“ respectively.

In the code block that follows, I first define a few variables, then double check that I am selecting the correct VMDK files for the operation, and then I resize them.

PowerCLI C:\Scripts> $HardDisk = 2
PowerCLI C:\Scripts> $HardDisk = "Hard disk " + $HardDisk
PowerCLI C:\Scripts> $HardDiskSize = 500
PowerCLI C:\Scripts> Get-HardDisk -vm $VM | where {$_.Name -eq $HardDisk}

CapacityGB      Persistence                                              Filename
----------      -----------                                                    --------
250.000         IndependentPersis... ...STD-2.9T-02] VM-Test-5/VM-Test-5_1.vmdk
250.000         IndependentPersis... ...STD-2.9T-01] VM-Test-6/VM-Test-6_1.vmdk


PowerCLI C:\Scripts> Get-HardDisk -vm $VM | where {$_.Name -eq $HardDisk} | Set-HardDisk -CapacityGB $HardDiskSize -Conf
irm:$false

CapacityGB      Persistence                                                    Filename
----------      -----------                                                    --------
500.000         IndependentPersis... ...STD-2.9T-02] VM-Test-5/VM-Test-5_1.vmdk
500.000         IndependentPersis... ...STD-2.9T-01] VM-Test-6/VM-Test-6_1.vmdk


PowerCLI C:\Scripts> Get-VM $VM | Get-HardDisk | FT Parent, Name, CapacityGB -AutoSize

Parent        Name        CapacityGB
------        ----        ----------
VM-Test-5 Hard disk 1         40
VM-Test-5 Hard disk 2        500
VM-Test-5 Hard disk 3        400
VM-Test-5 Hard disk 4         80
VM-Test-6 Hard disk 1         40
VM-Test-6 Hard disk 2        500
VM-Test-6 Hard disk 3        400
VM-Test-6 Hard disk 4         80


PowerCLI C:\Scripts> $HardDisk = 3
PowerCLI C:\Scripts> $HardDisk = "Hard disk " + $HardDisk
PowerCLI C:\Scripts> $HardDiskSize = 800
PowerCLI C:\Scripts> Get-HardDisk -vm $VM | where {$_.Name -eq $HardDisk}

CapacityGB      Persistence                                                    Filename
----------      -----------                                                    --------
400.000         IndependentPersis... ...STD-2.9T-02] VM-Test-5/VM-Test-5_2.vmdk
400.000         IndependentPersis... ...STD-2.9T-01] VM-Test-6/VM-Test-6_2.vmdk


PowerCLI C:\Scripts> Get-HardDisk -vm $VM | where {$_.Name -eq $HardDisk} | Set-HardDisk -CapacityGB $HardDiskSize -Conf
irm:$false

CapacityGB      Persistence                                                    Filename
----------      -----------                                                    --------
800.000         IndependentPersis... ...STD-2.9T-02] VM-Test-5/VM-Test-5_2.vmdk
800.000         IndependentPersis... ...STD-2.9T-01] VM-Test-6/VM-Test-6_2.vmdk


PowerCLI C:\Scripts>

If the above code block is not self-explanatory, feel free to post your questions about it in the comments. I’ll try to complete the tutorial in a timely manner.

Virtuellen Maschinen mithilfe der PowerCLI RAM hinzufügen oder entfernen

03. April 2023 um 06:00

In diesem Tutorial beschreibe ich, wie mithilfe der PowerCLI die RAM-Größe einer virtuellen Maschine (VM) bearbeitet werden kann. Diese Methode lässt sich auch anwenden, um mehrere VMs in einem Arbeitsablauf zu bearbeiten. Dies bietet sich z.B. immer dann an, wenn so viele VMs betroffen sind, dass der Aufwand der manuellen Bearbeitung im vSphere-Client zu groß erscheint.

Die Idee hierzu stammt ursprünglich aus dem Artikel PowerShell Friday: Adding Memory with PowerCLI von Anne Jan Elsinga aus dem Jahr 2015.

Zielstellung

Es soll die Größe des Arbeitsspeichers von zunächst einer und anschließend mehrerer VMs bearbeitet werden. Dabei wird gezeigt, wie RAM im laufenden Betrieb erhöht und bei ausgeschalteten VMs reduziert werden kann.

Voraussetzungen

Eine funktionsfähige Installation der VMware PowerCLI und die Möglichkeit den vCenter Server über diese ansprechen zu können, ist Voraussetzung, um diesem Tutorial zu folgen.

Um den RAM einer VM im laufenden Zustand erhöhen zu können, muss die Option Memory Hot Plug der betreffenden VM aktiviert sein.

Anmeldung am vCenter

Zu Beginn verbindet man sich zu der vCenter-Instanz, deren VMs man bearbeiten möchte. Das Kommando hat folgenden Aufbau:

Connect-VIServer [-Server] <String[]> [-Protocol {http | https}] [-User <String>]

Beispiel:

Connect-VIServer -Server vcsa.beispiel.de -Protocol https -User alice@vsphere.local

Beispiel 1: RAM einer einzelnen VM erhöhen

Dieses Beispiel ist direkt dem Artikel PowerShell Friday: Adding Memory with PowerCLI entnommen.

Der Befehl ist ein Einzeiler:

Get-VM -Name MeineVM | Set-VM -MemoryGB 2

Werte kleiner GB werden dezimal spezifiziert:

Get-VM -Name MeineVM |Set-VM -MemoryGB 0.75

Beispiel 2: RAM mehrerer VMs erhöhen

Angenommen in meiner Umgebung existieren mehrere VMs, die nach dem Muster VM-Test- benannt sind, deren RAM auf 24 GB erhöht werden soll.

Zuerst kann man sich die gewünschte Zielgruppe anzeigen lassen:

PS C:\Users\joerg> Get-VM | Where-Object {$_ | Select-String -pattern "VM-Test-\d"} | Sort

Name          PowerState Num CPUs MemoryGB
----          ---------- -------- --------
VM-Test-01    PoweredOn  4        16.000
VM-Test-02    PoweredOn  4        16.000
VM-Test-03    PoweredOn  4        16.000
VM-Test-04    PoweredOn  4        16.000
VM-Test-05    PoweredOn  4        16.000
VM-Test-07    PoweredOn  4        16.000
VM-Test-08    PoweredOn  4        16.000
VM-Test-09    PoweredOn  4        16.000
VM-Test-10    PoweredOn  4        16.000
VM-Test-11    PoweredOn  4        16.000
VM-Test-12    PoweredOn  4        16.000
VM-Test-13    PoweredOn  4        16.000
VM-Test-14    PoweredOn  4        16.000
VM-Test-15    PoweredOn  4        16.000
VM-Test-17    PoweredOn  4        16.000
VM-Test-18    PoweredOn  4        16.000

Der Platzhalter ‚\d‘ steht dabei für beliebige Dezimalzahl.

Der RAM kann nun wie folgt auf jeweils 24 GB erhöht werden:

PS C:\Users\joerg> Get-VM | Where-Object {$_ | Select-String -pattern "VM-Test-\d"} | Set-VM -MemoryGB 24

Confirmation
Proceed to configure the following parameters of the virtual machine with name 'VM-Test-01'?
New MemoryMB: 24765MB
[Y] Yes  [A] Yes to All  [N] No  [L] No to All  [S] Suspend  [?] Help (default is "Y"): A

Name          PowerState Num CPUs MemoryGB
----          ---------- -------- --------
VM-Test-01    PoweredOn  4        24.000
VM-Test-02    PoweredOn  4        24.000
VM-Test-03    PoweredOn  4        24.000
VM-Test-04    PoweredOn  4        24.000
VM-Test-05    PoweredOn  4        24.000
VM-Test-07    PoweredOn  4        24.000
VM-Test-08    PoweredOn  4        24.000
VM-Test-09    PoweredOn  4        24.000
VM-Test-10    PoweredOn  4        24.000
VM-Test-11    PoweredOn  4        24.000
VM-Test-12    PoweredOn  4        24.000
VM-Test-13    PoweredOn  4        24.000
VM-Test-14    PoweredOn  4        24.000
VM-Test-15    PoweredOn  4        24.000
VM-Test-17    PoweredOn  4        24.000
VM-Test-18    PoweredOn  4        24.000

Beispiel 3: RAM einer VM reduzieren

Auch dieses Beispiel ist direkt dem Artikel PowerShell Friday: Adding Memory with PowerCLI entnommen.

Die betroffene VM muss dazu ausgeschaltet werden:

Get-VM -Name MeineVM | Shutdown-VMGuest|Set-VM -MemoryGB 0.25

Zusammenfassung

Mit der PowerCLI ist es möglich sich wiederholende Tätigkeiten abarbeiten zu lassen. Dies spart Zeit und Nerven.

Mir hat der Tipp von Anne Jan Elsinga sehr geholfen, weshalb ich die Methode hier für mich, euch und die Nachwelt dokumentiert habe.

Snap-Pakete unter Linux Mint installieren

Von:Niko
22. Dezember 2020 um 15:03

Seit vielen Jahren bin ich zufriedener Linux Mint Nutzer. Immer wieder stoße ich auf Software die als Snap-Paket angeboten wird und die dich gerne nutzen möchte. Das ist unter Mint allerdings standardmäßig nicht möglich, denn die Installation dieser Pakete wird von Mint aktiv verhindert. Das Mint entschieden hat, dass sie Snaps doof finden, nicht unterstützen [...]

Snap-Pakete unter Linux Mint installieren ist ein Beitrag von .

Gastbeitrag: Debian Server mit Nextcloud

Von:Niko
01. November 2020 um 11:50

Andreas hat einen Nextcloud-Server auf Debian-Basis installiert und dabei seine Vorgehensweise dokumentiert. Diese basiert zum großen Teil, aber nicht ausschließlich auf meinem Homeserver-Tutorial zu Ubuntu 18.04 [Homeserver/NAS mit Ubuntu 18.04: Teil 1, Einleitung, Hardware und Kosten]. Jedoch mit einigen Abweichungen, da sich Debian und Ubuntu doch in einigen Details unterscheiden. Die Dokumentation seiner Vorgehensweise hat [...]

Gastbeitrag: Debian Server mit Nextcloud ist ein Beitrag von .

Übersicht: Ubuntu 20.04 Homeserver/NAS, Teil 1

Von:Niko
16. August 2020 um 11:27

Mittlerweile ist Ubuntu 20.04 erschienen. Hierbei handelt es sich wieder um eine LTS-Version (long term support), die 5 Jahre mit Updates versorgt wird. Also bis April 2025. Damit wird Ubuntu 18.04 abgelöst, auf welchem die bisherige Homeserver-Anleitung basiert. Ubuntu 18.04 war ebenfalls eine LTS-Version und wird noch bis April 2023 mit Sicherheitsupdates versorgt. Wer also [...]

Übersicht: Ubuntu 20.04 Homeserver/NAS, Teil 1 ist ein Beitrag von .

Installation des Betriebssystems: Ubuntu 20.04 Homeserver/NAS, Teil 2

Von:Niko
16. August 2020 um 11:27

Dieser Artikel ist Teil der Reihe selbstgebauter Ubuntu 20.04 Homeserver/NAS Zuerst wird das Betriebssystem Ubuntu Server 20.04 (Focal Fossa) installiert. Mit dieser Version wurde ein neues Installationsprogramm eingeführt, sodass sich die Installation von den Vorgängerversionen unterscheidet. Das Kapitel zur Partitionierung der Festplatten unterteilt sich in zwei Teile. Je nachdem ob man ein System mit internen [...]

Installation des Betriebssystems: Ubuntu 20.04 Homeserver/NAS, Teil 2 ist ein Beitrag von .

Grundkonfiguration: Ubuntu 20.04 Homeserver/NAS, Teil 3

Von:Niko
16. August 2020 um 11:27

Dieser Artikel ist Teil der Reihe selbstgebauter Ubuntu 20.04 Homeserver/NAS In den beiden vorherigen Teilen wurde die Hardware eingerichtet und das Betriebssystem installiert. Bevor es nun an das Installieren und Einrichten der eigentlichen Dienste geht, sollten noch ein paar Grundeinstellungen vorgenommen werden. Außerdem gilt es ein paar grundlegende Dinge bei der Administration zu beachten. Gleichbleibende [...]

Grundkonfiguration: Ubuntu 20.04 Homeserver/NAS, Teil 3 ist ein Beitrag von .

Ordnerfreigaben: Ubuntu 20.04 Homeserver/NAS, Teil 4

Von:Niko
16. August 2020 um 11:27

Dieser Artikel ist Teil der Reihe selbstgebauter Ubuntu 20.04 Homeserver/NAS Das Betriebssystem wurde in den letzten Teilen installiert und die wichtigsten Grundkonfigurationen vorgenommen. Nun können die ersten Dienste auf dem Homeserver installiert werden. In diesem Teil werden die Ordnerfreigaben für das lokale Heimnetz erstellt. Die Software, die hierfür verwendet wird, ist SAMBA-Server. Damit können über [...]

Ordnerfreigaben: Ubuntu 20.04 Homeserver/NAS, Teil 4 ist ein Beitrag von .

Nextcloud: Ubuntu 20.04 Homeserver/NAS, Teil 5

Von:Niko
16. August 2020 um 11:27

Dieser Artikel ist Teil der Reihe selbstgebauter Ubuntu 20.04 Homeserver/NAS Nextcloud hat sich mittlerweile zum Quasi-Standard für selbstgehostete Cloudanwendungen entwickelt. Nextcloud kann uneingeschränkt kostenlos genutzt werden. In Nextcloud können Kalender und Kontakte gespeichert und mit dem Smartphone synchronisiert werden. So kann man Dienste wie Google Calender komplett ersetzen. Außerdem gibt es einen Deskop-Client, mit welchem [...]

Nextcloud: Ubuntu 20.04 Homeserver/NAS, Teil 5 ist ein Beitrag von .

Plex Mediaserver: Ubuntu 20.04 Homeserver/NAS, Teil 6

Von:Niko
16. August 2020 um 11:27

Dieser Artikel ist Teil der Reihe selbstgebauter Ubuntu 20.04 Homeserver/NAS Zur Organisation und Wiedergabe von Musik und Videos wird Plex verwendet. Plex besteht aus zwei Komponenten, dem Server und den Clients. Die Serverkomponente wird auf dem Homeserver installiert. Hier werden alle Audio- und Videodateien zentral verwaltet und der Mediaserver organisiert. Die Clients sind die Wiedergabegeräte. [...]

Plex Mediaserver: Ubuntu 20.04 Homeserver/NAS, Teil 6 ist ein Beitrag von .

Backup: Ubuntu 20.04 Homeserver/NAS, Teil 7

Von:Niko
16. August 2020 um 11:27

Dieser Artikel ist Teil der Reihe selbstgebauter Ubuntu 20.04 Homeserver/NAS Im letzten Kapitel geht es um die Datensicherung. Der Homeserver dient als zentrale Ablage für eine Vielzahl wichtiger Dateien. Eventuell sogar von mehreren Personen. Ein Verlust der Daten wäre daher verheerend. Das RAID-System schützt zwar vor dem Verlust der Daten durch einen Hardwaredefekt an einer [...]

Backup: Ubuntu 20.04 Homeserver/NAS, Teil 7 ist ein Beitrag von .

Partnerlinks automatisch mit * oder Icon markieren

Von:Niko
08. August 2019 um 16:28
Partnerlinks automatisch markeiren Beitrag

Auf dieser und anderen Webseite von mir setze ich manchmal sogenannte Partnerlinks ein. Dabei wird ein im Beitrag erwähntes Produkt direkt mit einem Onlineshop verlinkt. Kauft jemand über diesen Link ein Produkt, erhält der Webseitenbetreiber eine Provision.

Es handelt sich dabei um eine Möglichkeit mit der Webseite Einnahmen zu erzielen, ohne die Seite mit Werbung zu überfrachten, oder sich für sogenannte Sonsored Posts zu verkaufen.

Üblicherweise wird beim Aufruf des Shops über den Partnerlink ein Cookie gesetzt. Dadurch können auch Einkäufe vergütet werden, die erst später getätigt werden. Dementsprechend gibt es schwarze Schafe, die versuchen um jeden Preis diesen Cookie zu setzen.

Dies passiert beispielsweise indem die Seite des Shops in einem Pop-Up oder in einem unsichtbaren Iframe geladen wird. Oder es wird versucht Besucherinnen und Besucher mit mehr oder weniger zweifelhaften Methoden dazu zu bringen, selbst auf den Link zu klicken. Beispielsweise indem man verschleiert dass es sich um einen Partnerlink handelt.

Um die eigene Glaubwürdigkeit nicht zu gefährden und auch um rechtlichen Problemen mit ungekennzeichneter Werbung aus dem Weg zu gehen, ist man also gut beraten, Partnerlinks auch als solche ersichtlich zu machen.

Bisher habe ich Partnerlinks immer manuell mit einem Sternchen markiert. Die Bedeutung des Sternchens habe ich in der Seitenleiste oder im Footer erläutert. Mittlerweile bin ich eher dazu übergegangen Partnerlinks mit dem Icon eines Einkaufswagens zu versehen.

Ich bin mir noch nicht sicher was die bessere Version ist. Ich denke der Einkaufswagen ist unmissverständlich. Das Sternchen funktioniert hingegen immer, auch wenn keine Bilder geladen werden.

Mit CSS Amazon und andere Partnerlinks automatisch mit einem Sternchen oder Icon kennzeichnen

Um mir die Arbeit zu erleichtern und um ggf. an einer zentralen Stelle die Art der Kennzeichnung ändern zu können, war ich auf der Suche nach einer Möglichkeit die Kennzeichnung zu automatisieren. Wie sich herausstellt, lässt sich dies mit einer Zeile CSS lösen.

/* Sternchen hinter Amazon Partnerlinks */
a[href*="amazon.de"]:after , a[href*="amzn.to"]:after { content: "*";  }
/* Icon hinter Amazon Partnerlinks */
a[href*="amazon.de"]:after , a[href*="amzn.to"]:after { content: url(path/to/icon.png);  }

Das Ganze sieht dann so aus:

Partnerlinks mit Markierung

Partnerlinks automatisch mit * oder Icon markieren ist ein Beitrag von techgrube.de.

Automatisches Öffnen von USB-Sticks unter Linux Mint deaktivieren

Von:Niko
20. Juni 2019 um 12:03
USB Stick in Laptop Beitrag

Standardmäßig werden USB-Sticks und andere externe Datenträger unter Linux Mint automatisch eingehängt und in einem neuen Fenster im Dateimanager geöffnet.

Da ich gerade wieder häufig mit dem Raspberry Pi herumspiele, kommt es vor, dass ich häufig dessen SD-Karte am Laptop einstecke. Dabei werden jedes mal zwei neue Dateimanagerfenster geöffnet. Einmal für die Bootpartition und einmal für die Betriebssystempartition auf der SD-Karte. Da ich normalerweise jedoch über das Terminal auf die SD-Karte zugreifen möchte, schließe ich die Fenster immer direkt nachdem sie geöffnet wurden.

In den Systemeinstellungen von Linux Mint habe ich keine Option gefunden um dieses Verhalten zu ändern. Also habe ich in der Vergangenheit das Verhalten des Betriebssystems eben akzeptiert. Immerhin handelt es sich doch nur um ein Luxusproblem.

Heute hat mich dieses Verhalten jedoch so genervt, dass ich mich auf die Suche nach einer Lösung gemacht habe. Und -Taaadaaa- nach Jahren der Nutzung habe ich die Einstellungen des Dateimanagers Nemo entdeckt.

Für den Fall dass ich nicht der einzige bin, der vor lauter Bäumen den Wald nicht sieht, schreibe ich diesen Beitrag.

Automatisches Mounten und Öffnen von externen Datenträgern unter Linux Mint deaktivieren.

Die entsprechende Option findet man nicht in den Systemeinstellungen, sondern in den Einstellungen des Dateimanagers Nemo. In einem geöffneten Fenster klickt man auf Bearbeiten > Einstellungen. Hier wäht man in der linken Menüleiste den Punkt “Verhalten” und scrollt nach unten zu “Handhabung von Datenträgern“.

Hier findet man die beiden gesuchten Optionen “Automatisch entfernbare Medien, beim Einfügen und beim Systemstart, einhängen” sowie “Für automatisch eingehängte Geräte, automatisch einen neuen Ordner öffnen“.

Wenn man bei beiden Optionen den Haken entfernt, werden externe Datenträger zukünftig zwar noch in der Seitenleiste von Nemo angezeigt, jedoch nicht mehr eingehängt und nicht mehr geöffnet.

Automatisches Einhängen und Öffnen von externen Datenträgern unter Linux Mint deaktivieren.

Automatisches Öffnen von USB-Sticks unter Linux Mint deaktivieren ist ein Beitrag von techgrube.de.

❌